Completeness of the systems of Bessel functions of index $-5 / 2$

Abstract

Khats' R.V. Let $L^{2}\left((0 ; 1) ; x^{4} d x\right)$ be the weighted Lebesgue space of all measurable functions $f:(0 ; 1) \rightarrow \mathbb{C}$, satisfying $\int_{0}^{1} t^{4}|f(t)|^{2} d t<+\infty$. Let $J_{-5 / 2}$ be the Bessel function of the first kind of index $-5 / 2$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers. Necessary and sufficient conditions for the completeness of the system $\left\{\rho_{k}^{2} \sqrt{x \rho_{k}} J_{-5 / 2}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ in the space $L^{2}\left((0 ; 1) ; x^{4} d x\right)$ are found in terms of an entire function with the set of zeros coinciding with the sequence $\left(\rho_{k}\right)_{k \in \mathbb{N}}$. In this case, we study an integral representation of some class $E_{4,+}$ of even entire functions of exponential type $\sigma \leq 1$. This complements similar results on approximation properties of the systems of Bessel functions of negative half-integer index less than -1 , due to B. Vynnyts'kyi, V. Dilnyi, O. Shavala and the author.

Key words and phrases: Bessel function, Paley-Wiener theorem, Phragmen-Lindelöf theorem, Fubini's theorem, Hurwitz's theorem, Hahn-Banach theorem, Jensen's formula, entire function of exponential type, complete system.

[^0]
Introduction

Let $L^{2}(X)$ be the space of all measurable functions $f: X \rightarrow \mathbb{C}$ on a measurable set $X \subseteq \mathbb{R}$ with the norm

$$
\|f\|_{L^{2}(X)}^{2}:=\int_{X}|f(x)|^{2} d x
$$

Let $\gamma \in \mathbb{R}$ and $L^{2}\left((0 ; 1) ; t^{\gamma} d t\right)$ be the weighted Lebesgue space of all measurable functions $f:(0 ; 1) \rightarrow \mathbb{C}$, satisfying

$$
\int_{0}^{1} t^{\gamma}|f(t)|^{2} d t<+\infty .
$$

Let (see, for example, [2, p. 4], [12, p. 345], [22, p. 40])

$$
J_{v}(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(z / 2)^{v+2 k}}{k!\Gamma(v+k+1)}, \quad z=x+i y=r e^{i \varphi},
$$

be the Bessel function of the first kind of index $v \in \mathbb{R}$, where Γ is the gamma function. By Hurwitz's theorem (see [2, p. 59], [22, p. 483]), for $v>1$ the function J_{-v} has infinitely many real zeros and also $2[v]$ pairwise conjugate complex zeros, among them two pure imaginary zeros, when $[v]$ is an odd integer. Let $\rho_{k}, k \in \mathbb{N}$, be the zeros of the function J_{-v} for which $\operatorname{Im} \rho_{k}>0$ if $\rho_{k} \in \mathbb{C}$ or $\rho_{k}>0$ if $\rho_{k} \in \mathbb{R}$.

Since (see [12, p. 350], [22, p. 55]) $\sqrt{z} J_{-5 / 2}(z)=-\sqrt{2 / \pi} z^{-2}\left(z^{2} \cos z-3 z \sin z-3 \cos z\right)$, we have that the function $\rho^{2} \sqrt{x \rho} J_{-5 / 2}(x \rho)$ belongs to the space $L^{2}\left((0 ; 1) ; x^{4} d x\right)$ for every $\rho \in \mathbb{C}$. A system of elements $\left\{e_{k}: k \in \mathbb{N}\right\}$ in a separable Hilbert space \mathcal{H} is called complete (see [8, p. 131], [9, p. 4258]) if span $\left\{e_{k}: k \in \mathbb{N}\right\}=\mathcal{H}$.

Various approximation properties of the systems of Bessel functions has been studied in many papers (see, for example, $[1-7,10-22]$). In particular, it is well known that the system $\left\{\sqrt{x} J_{v}\left(x \widetilde{\rho}_{k}\right): k \in \mathbb{N}\right\}$ is an orthogonal basis for the space $L^{2}(0 ; 1)$ if $v>-1$ and $\left(\widetilde{\rho}_{k}\right)_{k \in \mathbb{N}}$ is a sequence of positive zeros of J_{v} (see $[1,2,4,12,22]$). It follows that if $v>-1$ and $\left(\widetilde{\rho}_{k}\right)_{k \in \mathbb{N}}$ is a sequence of positive zeros of J_{v}, then the system $\left\{x^{-v} J_{v}\left(x \widetilde{\rho}_{k}\right): k \in \mathbb{N}\right\}$ is complete and minimal in $L^{2}\left((0 ; 1) ; x^{2 v+1} d x\right)$. The system $\left\{\sqrt{x} J_{v}\left(x \widetilde{\rho}_{k}\right): k \in \mathbb{N}\right\}$ is also complete (see [12, pp. 347, 356]) in $L^{2}(0 ; 1)$ if $\left(\widetilde{\rho}_{k}\right)_{k \in \mathbb{N}}$ is a sequence of zeros of the function J_{v}^{\prime}. Besides, from [3] it follows that if $v>-1 / 2$ and $\left(\widetilde{\rho}_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct positive numbers such that $\widetilde{\rho}_{k} \leq \pi(k+v / 2)$ for all sufficiently large $k \in \mathbb{N}$, then the system $\left\{\sqrt{x} J_{v}\left(x \widetilde{\rho}_{k}\right): k \in \mathbb{N}\right\}$ is complete in $L^{2}(0 ; 1)$.

Basis properties (completeness, minimality, basicity) of the above systems of Bessel functions and more general systems $\left\{x^{-p-1} \sqrt{x \widetilde{\rho}_{k}} J_{v}\left(x \widetilde{\rho}_{k}\right): k \in \mathbb{N}\right\}$ in the space $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$, where $v \geq 1 / 2, p \in \mathbb{R}$ and $\left(\widetilde{\rho}_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct nonzero complex numbers, have been studied in [6,7,15-19]. Those results are formulated in terms of sequences of zeros of functions from certain classes of entire functions.

Approximation properties of the systems of Bessel functions for $v<-1, v \notin \mathbb{Z}$, were investigated in $[5,10,11,13,14,20,21]$. In particular, at studying of one boundary value problem, in [20] (see also [21]) it was proven that the system $\left\{\rho_{k} \sqrt{x \rho_{k}} J_{-3 / 2}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ is complete in the space $L^{2}\left((0 ; 1) ; x^{2} d x\right)$, and the system $\left\{\rho_{k} \sqrt{x \rho_{k}} J_{-3 / 2}\left(x \rho_{k}\right): k \in \mathbb{N} \backslash\{1\}\right\}$ is complete, minimal and is not a basis in this space, where $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}^{\prime}} \rho_{-k}:=-\rho_{k}$, is a sequence of zeros of the function $J_{-3 / 2}$.

In addition, in [10] it was shown that the system $\left\{\rho_{k}^{2} \sqrt{x \rho_{k}} J_{-5 / 2}\left(x \rho_{k}\right): k \in \mathbb{N} \backslash\{1 ; 2\}\right\}$ is complete and minimal in $L^{2}\left((0 ; 1) ; x^{4} d x\right)$, where $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of zeros of $J_{-5 / 2}$. Besides, in [11] it was established that the system $\left\{\rho_{k}^{v-1 / 2} \sqrt{x \rho_{k}} J_{-v}\left(x \rho_{k}\right): k \in \mathbb{N} \backslash\{1 ; 2 ; \ldots ; l\}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{2 v-1} d x\right)$ if $v=l+1 / 2, l \in \mathbb{N}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of zeros of J_{-v}. However, the problem of completeness of this system in $L^{2}\left((0 ; 1) ; x^{2 v-1} d x\right)$, when $v=l+1 / 2, l \in \mathbb{N}$ and $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is an arbitrary sequence of distinct nonzero complex numbers, remain open. In this direction, in [13] the authors obtained a criterion for the completeness and minimality of the system $\left\{\rho_{k} \sqrt{x \rho_{k}} J_{-3 / 2}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ in $L^{2}\left((0 ; 1) ; x^{2} d x\right)$ with an arbitrary sequence of nonzero complex numbers $\left(\rho_{k}\right)_{k \in \mathbb{N}}$. In addition, in [14] it was proven that the system $\left\{x^{-2}\left(\rho_{k} \sqrt{x \rho_{k}} J_{-3 / 2}\left(x \rho_{k}\right)-\rho_{1} \sqrt{x \rho_{1}} J_{-3 / 2}\left(x \rho_{1}\right)\right): k \in \mathbb{N} \backslash\{1\}\right\}$ is also complete and minimal in $L^{2}\left((0 ; 1) ; x^{2} d x\right)$, where $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a sequence of distinct nonzero complex numbers such that $\rho_{k}^{2} \neq \rho_{m}^{2}$ for $k \neq m$.

In this paper, using methods of [5-7,9,13-16], we study an integral representation of some class $E_{4,+}$ of even entire functions of exponential type $\sigma \leq 1$ (see Theorem 1) and find necessary and sufficient conditions for the completeness of the system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$, where $\psi_{k}(x):=\rho_{k}^{2} \sqrt{x \rho_{k}} J_{-5 / 2}\left(x \rho_{k}\right)$, in the space $L^{2}\left((0 ; 1) ; x^{4} d x\right)$ in terms of an entire function with the set of zeros coinciding with the sequence of distinct nonzero complex numbers $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ (see Theorems 2-8). This complements the results of papers [3,5,10,11, 13, 14, 20,21].

1 Preliminaries

An entire function G is said to be of exponential type $\sigma \in[0 ;+\infty$) (see [8, p. 4], [9, p. 4262]), if for any $\varepsilon>0$ there exists a constant $c(\varepsilon)$ such that

$$
|G(z)| \leq c(\varepsilon) \exp ((\sigma+\varepsilon)|z|)
$$

for all $z \in \mathbb{C}$.
Denote by $P W_{\sigma}^{2}$ the set of all entire functions of exponential type $\sigma \in(0 ;+\infty)$ whose narrowing on \mathbb{R} belongs to the space $L^{2}(\mathbb{R})$, and by $P W_{\sigma,+}^{2}$ denote the class of even entire functions from $P W_{\sigma}^{2}$. According to the Paley-Wiener theorem (see [8, p. 69], [9, p. 4263]), the class $P W_{\sigma}^{2}$ coincides with the class of functions G admitting the representation

$$
G(z)=\int_{-\sigma}^{\sigma} e^{i t z} g(t) d t, \quad g \in L^{2}(-\sigma ; \sigma)
$$

and the class $P W_{\sigma,+}^{2}$ consists of the functions G representable in the form

$$
G(z)=\int_{0}^{\sigma} \cos (t z) g(t) d t, \quad g \in L^{2}(0 ; \sigma)
$$

Moreover, $\|g\|_{L^{2}(0 ; \sigma)}=\sqrt{2 / \pi}\|G\|_{L^{2}(0 ;+\infty)}$ and

$$
g(t)=\frac{2}{\pi} \int_{0}^{+\infty} G(z) \cos (t z) d z
$$

Let $\log ^{+} x=\max (0 ; \log x)$ for $x>0$. Here and subsequently, by c_{1}, c_{2}, \ldots we denote arbitrary positive constants. To prove our main results we need the following auxiliary lemmas.

Lemma 1 ([5, p. 6]). Let an entire function Q be defined by the formula

$$
\begin{equation*}
Q(z)=\sqrt{\frac{2}{\pi}} \int_{0}^{1}\left(-z^{2} t^{2} \cos (t z)+3 t z \sin (t z)+3 \cos (t z)\right) q(t) d t, \quad q \in L^{2}(0 ; 1) \tag{1}
\end{equation*}
$$

Then for all $z=x+i y=r e^{i \varphi} \in \mathbb{C}$, we have

$$
|Q(z)| \leq c_{1} \frac{e^{|\operatorname{Im} z|}}{\sqrt{1+|\operatorname{Im} z|}}(1+|z|)^{2}
$$

and Q is an even entire function of exponential type $\sigma \leq 1$.
Lemma 2 ([9, p. 4263]). Let Q be an entire function of exponential type $\sigma \leq 1$ for which the integral

$$
\int_{-\infty}^{+\infty} \frac{\log ^{+}|Q(x)|}{1+x^{2}} d x
$$

exists and let $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of nonzero roots of the function $Q(z)$. Then

$$
\sum_{k \in \mathbb{N}}\left|\operatorname{Im} \frac{1}{\rho_{k}}\right|<+\infty
$$

2 Main results

Our principal results are the following statements.
Theorem 1. An entire function Q has the representation

$$
\begin{equation*}
Q(z)=\int_{0}^{1} z^{2} \sqrt{t z} J_{-5 / 2}(t z) t^{4} h(t) d t \tag{2}
\end{equation*}
$$

with some function $h \in L^{2}\left((0 ; 1) ; x^{4} d x\right)$ if and only if it is an even entire function of exponential type $\sigma \leq 1$ such that

$$
\begin{gather*}
Q(0)=3 \sqrt{\frac{2}{\pi}} \int_{0}^{1} t^{2} h(t) d t \tag{3}\\
\left.\frac{Q^{\prime}(z)}{z}\right|_{z=0}=\sqrt{\frac{2}{\pi}} \int_{0}^{1} t^{4} h(t) d t \tag{4}
\end{gather*}
$$

and the function $z^{-1}\left(z^{-1} Q^{\prime}(z)\right)^{\prime}$ belongs to the space $P W_{1,+}^{2}$. If these conditions are fulfilled, then

$$
h(t)=\sqrt{\frac{2}{\pi}} \frac{1}{t^{6}} \int_{0}^{+\infty} \frac{1}{z}\left(\frac{Q^{\prime}(z)}{z}\right)^{\prime} \cos (t z) d z
$$

Proof. Necessity. Let Q has the representation (2) with some function $h \in L^{2}\left((0 ; 1) ; x^{4} d x\right)$. Since

$$
z^{2} \sqrt{t z} J_{-5 / 2}(t z)=\sqrt{\frac{2}{\pi}} \frac{-z^{2} t^{2} \cos (t z)+3 t z \sin (t z)+3 \cos (t z)}{t^{2}}
$$

we have

$$
Q(z)=\sqrt{\frac{2}{\pi}} \int_{0}^{1}\left(-z^{2} t^{2} \cos (t z)+3 t z \sin (t z)+3 \cos (t z)\right) t^{2} h(t) d t, \quad Q(0)=3 \sqrt{\frac{2}{\pi}} \int_{0}^{1} t^{2} h(t) d t
$$

Therefore, by Lemma 1, the function Q is an even entire function of exponential type $\sigma \leq 1$, and

$$
\begin{aligned}
Q^{\prime}(z) & =\sqrt{\frac{2}{\pi}} \int_{0}^{1}\left(z^{2} t \sin (t z)+z \cos (t z)\right) t^{4} h(t) d t \\
\frac{Q^{\prime}(z)}{z} & =\sqrt{\frac{2}{\pi}} \int_{0}^{1}(t z \sin (t z)+\cos (t z)) t^{4} h(t) d t,\left.\quad \frac{Q^{\prime}(z)}{z}\right|_{z=0}=\sqrt{\frac{2}{\pi}} \int_{0}^{1} t^{4} h(t) d t \\
\left(\frac{Q^{\prime}(z)}{z}\right)^{\prime} & =\sqrt{\frac{2}{\pi}} \int_{0}^{1} z \cos (t z) t^{6} h(t) d t, \quad \frac{1}{z}\left(\frac{Q^{\prime}(z)}{z}\right)^{\prime}=\sqrt{\frac{2}{\pi}} \int_{0}^{1} \cos (t z) t^{4} q(t) d t
\end{aligned}
$$

where $q(t):=t^{2} h(t)$. Since $h \in L^{2}\left((0 ; 1) ; x^{4} d x\right)$, we have $q \in L^{2}(0 ; 1)$, and in accordance with the Paley-Wiener theorem, the function $z^{-1}\left(z^{-1} Q^{\prime}(z)\right)^{\prime}$ belongs to the space $P W_{1,+}^{2}$.

Sufficiency. If all the conditions of the theorem hold, then from the formula for the inverse Fourier cosine transformation it follows that the function

$$
q(t)=\sqrt{\frac{2}{\pi}} \frac{1}{t^{4}} \int_{0}^{+\infty} \frac{1}{z}\left(\frac{Q^{\prime}(z)}{z}\right)^{\prime} \cos (t z) d z
$$

belongs to the space $L^{2}(0 ; 1)$, and

$$
\left(\frac{Q^{\prime}(z)}{z}\right)^{\prime}=\sqrt{\frac{2}{\pi}} \int_{0}^{1} z \cos (t z) t^{4} q(t) d t
$$

Using Fubini's theorem, we get

$$
\begin{aligned}
\frac{Q^{\prime}(z)}{z}-\left.\frac{Q^{\prime}(z)}{z}\right|_{z=0} & =\sqrt{\frac{2}{\pi}} \int_{0}^{1} t^{4} q(t) d t \int_{0}^{z} w \cos (t w) d w \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{1}(t z \sin (t z)+\cos (t z)-1) t^{2} q(t) d t \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{1}(t z \sin (t z)+\cos (t z)-1) t^{4} h(t) d t
\end{aligned}
$$

where $h(t)=t^{-2} q(t) \in L^{2}\left((0 ; 1) ; x^{4} d x\right)$. Further, using (4), we obtain

$$
Q^{\prime}(z)=\sqrt{\frac{2}{\pi}} \int_{0}^{1}\left(t z^{2} \sin (t z)+z \cos (t z)\right) t^{4} h(t) d t
$$

Furthermore, applying Fubini's theorem, we get

$$
\begin{aligned}
Q(z)-Q(0) & =\sqrt{\frac{2}{\pi}} \int_{0}^{1} t^{4} h(t) d t \int_{0}^{z}\left(w \cos (t w)+t w^{2} \sin (t w)\right) d w \\
& =\sqrt{\frac{2}{\pi}} \int_{0}^{1}\left(-z^{2} t^{2} \cos (t z)+3 t z \sin (t z)+3 \cos (t z)-3\right) t^{2} h(t) d t
\end{aligned}
$$

Hence, taking into account (3), we have
$Q(z)=\sqrt{\frac{2}{\pi}} \int_{0}^{1}\left(-z^{2} t^{2} \cos (t z)+3 t z \sin (t z)+3 \cos (t z)\right) t^{2} h(t) d t=\int_{0}^{1} z^{2} \sqrt{t z} J_{-5 / 2}(t z) t^{4} h(t) d t$. Thus, the theorem is proved.

Let $\widetilde{E}_{4,+}$ be the class of entire functions Q that can be presented in the form (2) with some function $h \in L^{2}\left((0 ; 1) ; x^{4} d x\right)$, and let $E_{4,+}$ be the class of even entire functions Q of exponential type $\sigma \leq 1$ such that conditions (3), (4) are fulfilled with $h \in L^{2}\left((0 ; 1) ; x^{4} d x\right)$ and the function $z^{-1}\left(z^{-1} Q^{\prime}(z)\right)^{\prime}$ belongs to the space $P W_{1,+}^{2}$.
Corollary 1. $\widetilde{E}_{4,+}=E_{4,+}$.
Corollary 2. The class $E_{4,+}$ coincides with a set of entire functions Q representing in the form (1).
Remark 1. In [5], the class $E_{4,+}$ was described in terms of the existence of solutions of some differential equations. Also in [5], examples of entire functions $Q \in E_{4,+}$ are given.
Theorem 2. Let $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of nonzero complex numbers such that $\rho_{k}^{2} \neq \rho_{n}^{2}$ for $k \neq n$. For a system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ to be incomplete in the space $L^{2}\left((0 ; 1) ; x^{4} d x\right)$ it is necessary and sufficient that a sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$, where $\rho_{-k}:=-\rho_{k}, k \in \mathbb{N}$, is a subsequence of zeros of some nonzero entire function $Q \in E_{4,+}$.
Proof. According to Hahn-Banach theorem (see, e.g., [8, p. 131], [9, p. 4258]), the system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ is incomplete in $L^{2}\left((0 ; 1) ; x^{4} d x\right)$ if and only if there exists a nonzero function $h \in L^{2}\left((0 ; 1) ; x^{4} d x\right)$ such that

$$
\int_{0}^{1} \rho_{k}^{2} \sqrt{x \rho_{k}} J_{-5 / 2}\left(x \rho_{k}\right) x^{4} h(x) d x=0
$$

for all $k \in \mathbb{N}$. Hence, taking into account Theorem 1, we obtain the required proposition. Theorem 2 is proved.

Theorem 3. Let $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers such that $\left|\operatorname{Im} \rho_{k}\right| \geq \delta\left|\rho_{k}\right|$ for all $k \in \mathbb{N}$ and some $\delta>0$. If a system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{4} d x\right)$, then

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{\left|\rho_{k}\right|}=+\infty \tag{5}
\end{equation*}
$$

Proof. Suppose, to the contrary, that the system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ is not complete in the space $L^{2}\left((0 ; 1) ; x^{4} d x\right)$. Then, by Theorem 2, there exists a nonzero entire function $Q \in E_{4,+}$ for which the sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$ is a subsequence of zeros. By virtue of Corollary 2 , the function Q is of the kind (1). Due to Lemma 1, we have $|Q(x)| \leq c_{1}(1+|x|)^{2}$ for all $x \in \mathbb{R}$. This implies

$$
\int_{-\infty}^{+\infty} \frac{\log ^{+}|Q(x)|}{1+x^{2}} d x<+\infty
$$

Therefore, by Lemma 2, we get

$$
\sum_{k \in \mathbb{N}}\left|\operatorname{Im} \frac{1}{\rho_{k}}\right|<+\infty
$$

Since $\left|\operatorname{Im} \rho_{k}\right| \geq \delta\left|\rho_{k}\right|, \delta>0$, for all $k \in \mathbb{N}$, and

$$
\left|\operatorname{Im} \frac{1}{\rho_{k}}\right|=\frac{\left|\operatorname{Im} \rho_{k}\right|}{\left|\rho_{k}\right|^{2}} \geq \frac{\delta}{\left|\rho_{k}\right|^{\prime}},
$$

we have

$$
\sum_{k=1}^{\infty} \frac{1}{\left|\rho_{k}\right|}<+\infty
$$

This contradicts condition (5). Thus, the theorem is proved.
Theorem 4. Let $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers such that $\rho_{k}^{2} \neq \rho_{m}^{2}$ for $k \neq m$. Let a sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$, where $\rho_{-k}:=-\rho_{k}$, be a sequence of zeros of some even entire function G of exponential type $\sigma \leq 1$ for which on the rays $\left\{z: \arg z=\varphi_{j}\right\}$, $j \in\{1 ; 2 ; 3 ; 4\}, \varphi_{1} \in[0 ; \pi / 2), \varphi_{2} \in[\pi / 2 ; \pi), \varphi_{3} \in(\pi ; 3 \pi / 2], \varphi_{4} \in(3 \pi / 2 ; 2 \pi)$, we have

$$
|G(z)| \geq c_{2}(1+|z|)^{2} e^{|\operatorname{Im} z|}
$$

Then the system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{4} d x\right)$.
Proof. Assume the converse. Then, according to Theorem 2, there exists a nonzero even entire function $Q \in E_{4,+}$ for which the sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$ is a subsequence of zeros.

Let $V(z)=Q(z) / G(z)$. Then V is an even entire function of order $\tau \leq 1$, for which by Corollary 2 and Lemma 1, we obtain

$$
|V(z)| \leq c_{3} \frac{1}{\sqrt{1+|\operatorname{Im} z|}}, \quad \arg z=\varphi_{j}, \quad j \in\{1 ; 2 ; 3 ; 4\}
$$

Therefore, according to the Phragmén-Lindelöf theorem (see [8, p. 38], [9, p. 4263]), we get $V(z) \equiv 0$. Hence $Q(z) \equiv 0$. This contradiction proves the theorem.

Corollary 3. Let $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of zeros of the function $J_{-5 / 2}$. Then the system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{4} d x\right)$.
Proof. Indeed, a sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$, where $\rho_{-k}=-\rho_{k}$, is a sequence of zeros of an entire function $G(z)=-z^{2} \cos z+3 z \sin z+3 \cos z$, and this function satisfies the conditions of Theorem 4. Therefore, a system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{4} d x\right)$. Corollary 3 is proved.
Theorem 5. Let $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers such that $\rho_{k}^{2} \neq \rho_{m}^{2}$ for $k \neq m$. Let a sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$, where $\rho_{-k}:=-\rho_{k}$, be a sequence of zeros of some even entire function $G \notin E_{4,+}$ of exponential type $\sigma \leq 1$ for which on the rays $\left\{z: \arg z=\varphi_{j}\right\}$, $j \in\{1 ; 2 ; 3 ; 4\}, \varphi_{1} \in[0 ; \pi / 2), \varphi_{2} \in[\pi / 2 ; \pi), \varphi_{3} \in(\pi ; 3 \pi / 2], \varphi_{4} \in(3 \pi / 2 ; 2 \pi)$, the inequality

$$
|G(z)| \geq c_{4}(1+|z|)^{-\alpha} e^{|\operatorname{Im} z|}
$$

holds with $\alpha<1 / 2$. Then the system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{4} d x\right)$.
Proof. Assume the converse. Then, according to Theorem 2, there exists a nonzero even entire function $Q \in E_{4,+}$ for which the sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$ is a subsequence of zeros.

Let $V(z)=Q(z) / G(z)$. Then V is an even entire function of order $\tau \leq 1$, for which by Corollary 2 and Lemma 1, we get

$$
|V(z)| \leq c_{5} \frac{(1+|z|)^{\alpha+2}}{\sqrt{1+|\operatorname{Im} z|}}, \quad \arg z=\varphi_{j}, \quad j \in\{1 ; 2 ; 3 ; 4\}
$$

Since $\alpha+2<5 / 2$, according to the Phragmén-Lindelöf theorem, the function V is a polynomial of degree $\zeta<2$. However, V is an even entire function, and therefore the function V is a constant. Hence, $Q(z)=c_{6} G(z)$ and $Q \notin E_{4,+}$. Thus, we have a contradiction and the proof of the theorem is completed.
Theorem 6. Let $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers such that $\rho_{k}^{2} \neq \rho_{m}^{2}$ for $k \neq m$. Let a sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$, where $\rho_{-k}:=-\rho_{k}$, be a sequence of zeros of some even entire function $F \notin E_{4,+}$ of exponential type $\sigma \leq 1$ such that

$$
\begin{equation*}
|F(x+i \eta)| \geq \delta|x|^{-\alpha}, \quad \delta>0, \quad|x|>1 \tag{6}
\end{equation*}
$$

for some $\alpha<0$ and $\eta \in \mathbb{R}$. Then the system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{4} d x\right)$.
Proof. Let $F \notin E_{4,+}$ and the inequality (6) is true. Suppose, to the contrary, that the system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ is not complete in $L^{2}\left((0 ; 1) ; x^{4} d x\right)$. Then, by Theorem 2, there exists a nonzero even entire function $Q \in E_{4,+}$ which vanishes at the points ρ_{k}. However, the sequence $\left(\rho_{k}\right)_{k \in \mathbb{Z} \backslash\{0\}}$ is a sequence of zeros of an even entire function $F(z) \notin E_{4,+}$ of exponential type $\sigma \leq 1$. Therefore, $T(z)=Q(z) / F(z)$ is an even entire function of order $\tau \leq 1$. Since $Q \in E_{4,+}$, taking into account Corollary 2 and Lemma 1, we obtain

$$
|Q(x+i \eta)| \leq c_{7} \frac{e^{|\eta|}}{\sqrt{1+|\eta|}}\left(1+\sqrt{x^{2}+\eta^{2}}\right)^{2}, \quad x \in \mathbb{R}
$$

Using (6), we get

$$
|T(x+i \eta)| \leq c_{8}(1+|x|)^{2+\alpha}, \quad x \in \mathbb{R}
$$

In view of this, we have that $T(z)$ is a polynomial of degree $\zeta<2$. Further, since T is an even entire function, then $T(z)=c_{9}$. Furthermore, $F(z)=c_{10} Q(z)$ and $F(z) \in E_{4,+}$. This contradiction concludes the proof of the theorem.

Let $n(t)$ be the number of points of the sequence $\left(\rho_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{C}$ satisfying the inequality $\left|\rho_{k}\right| \leq t$, i.e. $n(t):=\sum_{\left|\rho_{k}\right| \leq t} 1$, and let

$$
N(r):=\int_{0}^{r} \frac{n(t)}{t} d t, \quad r>0
$$

Theorem 7. Let $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be an arbitrary sequence of distinct nonzero complex numbers. If

$$
\limsup _{r \rightarrow+\infty}\left(N(r)-\frac{2 r}{\pi}+\frac{1}{2} \log r-2 \log (1+r)\right)=+\infty
$$

then the system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{4} d x\right)$.
Proof. It suffices to assume the incompleteness of the system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ and prove that

$$
\begin{equation*}
\limsup _{r \rightarrow+\infty}\left(N(r)-\frac{2 r}{\pi}+\frac{1}{2} \log r-2 \log (1+r)\right)<+\infty \tag{7}
\end{equation*}
$$

By virtue of Theorem 2, there exists a nonzero even entire function $Q \in E_{4,+}$ of exponential type $\sigma \leq 1$ for which the sequence $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ is a subsequence of zeros. We may consider that $Q(0)=1$. Then, consecutively applying the Jensen formula (see [8, p. 10], [9, p. 4316]), Corollary 2 and Lemma 1, we obtain

$$
\begin{aligned}
N(r) & \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|Q\left(r e^{i \varphi}\right)\right| d \varphi \\
& \leq c_{11}+\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(r|\sin \varphi|-\frac{1}{2} \log (1+r|\sin \varphi|)+2 \log (1+r)\right) d \varphi \\
& \leq c_{11}+\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(r|\sin \varphi|-\frac{1}{2} \log r-\frac{1}{2} \log |\sin \varphi|+2 \log (1+r)\right) d \varphi \\
& =\frac{2 r}{\pi}-\frac{1}{2} \log r+2 \log (1+r)+c_{12}, \quad r>0,
\end{aligned}
$$

whence it follows (7). The theorem is proved.
Theorem 8. Let $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers. Assume that $\left|\rho_{k}\right| \leq \Delta k+\beta+\alpha_{k}$ for $0<\Delta<\frac{\pi}{2+\pi},-\Delta<\beta<1-\frac{2 \Delta}{\pi}(1+\pi)$. Let a sequence $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ be such that $\alpha_{k} \geq 0, \alpha_{k}=O(1)$ as $k \rightarrow+\infty$ and

$$
\sum_{k=1}^{\infty}\left|\alpha_{k+1}-\alpha_{k}\right|<+\infty, \quad \sum_{k=1}^{\infty} \frac{\alpha_{k}}{k}<+\infty .
$$

Then the system $\left\{\psi_{k}: k \in \mathbb{N}\right\}$ is complete in $L^{2}\left((0 ; 1) ; x^{4} d x\right)$.
Proof. Let $\mu_{k}=\Delta k+\beta+\alpha_{k}, k \in \mathbb{N}$, and

$$
n_{1}(t)=\sum_{\mu_{k} \leq t} 1, \quad N_{1}(r)=\int_{0}^{r} \frac{n_{1}(t)}{t} d t, \quad r>0 .
$$

Then $n(t) \geq n_{1}(t), N(r) \geq N_{1}(r)$ and $n_{1}(t)=m$ for $\Delta m+\beta+\alpha_{m} \leq t<\Delta(m+1)+\beta+\alpha_{m+1}$ $\left(n_{1}(t)=0\right.$ on $\left.\left(0 ; \mu_{1}\right)\right)$. Let $r \in\left[\mu_{s} ; \mu_{s+1}\right)$. Then $s=\frac{r}{\Delta}+O(1)$ as $r \rightarrow+\infty$.

Therefore, under the assumptions of the theorem, by analogy with [7, p. 894] (see also [6, p. 9]), we obtain

$$
\begin{aligned}
N_{1}(r) & \geq \sum_{k=1}^{s-1} k \log \frac{\Delta(k+1)+\beta}{\Delta k+\beta}+O(1)-\left|\sum_{k=1}^{s-1} k\left(\log \frac{\Delta(k+1)+\beta+\alpha_{k+1}}{\Delta k+\beta+\alpha_{k}}-\log \frac{\Delta(k+1)+\beta}{\Delta k+\beta}\right)\right| \\
& \geq \frac{r}{\Delta}-\left(\frac{1}{2}+\frac{\beta}{\Delta}\right) \log r-c_{13} \sum_{k=1}^{\infty}\left(\left|\alpha_{k+1}-\alpha_{k}\right|+\frac{\alpha_{k}}{k}\right)+O(1) \geq \frac{r}{\Delta}-\left(\frac{1}{2}+\frac{\beta}{\Delta}\right) \log r+O(1)
\end{aligned}
$$

as $r \rightarrow+\infty$. In view of this, for $0<\Delta<\frac{\pi}{2+\pi}$ and $-\Delta<\beta<1-\frac{2 \Delta}{\pi}(1+\pi)$, we get

$$
\begin{aligned}
\limsup _{r \rightarrow+\infty} & \left(N(r)-\frac{2 r}{\pi}+\frac{1}{2} \log r-2 \log (1+r)\right) \\
& \geq \limsup _{r \rightarrow+\infty}\left(N_{1}(r)-\frac{2 r}{\pi}+\frac{1}{2} \log r-2 \log (1+r)\right) \\
& \geq \limsup _{r \rightarrow+\infty}\left(\frac{r}{\Delta}-\left(\frac{1}{2}+\frac{\beta}{\Delta}\right) \log r-\frac{2 r}{\pi}+\frac{1}{2} \log r-2 \log (1+r)+O(1)\right) \\
& \geq \limsup _{r \rightarrow+\infty}\left(r\left(\frac{1}{\Delta}-\frac{2}{\pi}\right)-\left(\frac{\beta}{\Delta}+2\right) \log (1+r)+O(1)\right) \\
& \geq \limsup _{r \rightarrow+\infty}\left(r\left(\frac{1}{\Delta}-\frac{2}{\pi}-\frac{\beta}{\Delta}-2\right)+O(1)\right)=+\infty
\end{aligned}
$$

Finally, according to Theorem 7, we obtain the required proposition. The proof of theorem is completed.

References

[1] Abreu L.D. Completeness, special functions and uncertainty principles over q-linear grids. J. Phys. A: Math. Gen. 2006, 39 (47), 14567-14580. doi:10.1088/0305-4470/39/47/004
[2] Bateman H., Erdélyi A. Higher transcendental functions, Vol. II. McGraw-Hill, New York-Toronto-London, 1953.
[3] Boas R.P., Pollard H. Complete sets of Bessel and Legendre functions. Ann. of Math. (2) 1947, 48 (2), 366-384. doi:10.2307/1969177
[4] Hochstadt H. The mean convergence of Fourier-Bessel series. SIAM Rev. 1967, 9, 211-218.
[5] Khats' R.V. Integral representation of one class of entire functions. Armen. J. Math. 2022, 14 (1), 1-9. doi: 10.52737/18291163-2022.14.1-1-9
[6] Khats' R.V. On conditions of the completeness of some systems of Bessel functions in the space $L^{2}\left((0 ; 1) ; x^{2 p} d x\right)$. Azerb. J. Math. 2021, 11 (1), 3-10.
[7] Khats' R.V. Completeness conditions of systems of Bessel functions in weighted L^{2}-spaces in terms of entire functions. Turkish J. Math. 2021, 45 (2), 890-895. doi:10.3906/mat-2101-76
[8] Levin B.Ya. Lectures on entire functions. In: Lyubarskii Yu., Sodin M., Tkachenko V. (Eds.) Transl. Math. Monogr. Amer. Math. Soc., Providence, R.I., 150, 1996.
[9] Sedletskii A.M. Analytic Fourier transforms and exponential approximations. I. J. Math. Sci. 2005, 129 (6), 4251-4408. doi:10.1007/s10958-005-0349-y
[10] Shavala O.V. On some approximation properties of the Bessel functions of order -5/2. Mat. Stud. 2015, 43 (2), 180-184. (in Ukrainian) doi:10.15330/ms.43.2.180-184
[11] Shavala O.V. On completeness of systems of functions generated by the Bessel function. Bukovinian Math. J. 2017, 5 (3-4), 168-171. (in Ukrainian)
[12] Vladimirov V.S. Equations of Mathematical Physics. Nauka, Moscow, 1981. (in Russian)
[13] Vynnyts'kyi B.V., Dilnyi V.M. On approximation properties of one trigonometric system. Russ. Math. 2014, 58 (11), 10-21. doi:10.3103/S1066369X14110024
[14] Vynnyts'kyi B.V., Khats' R.V. Some approximation properties of the systems of Bessel functions of index $-3 / 2$. Mat. Stud. 2010, 34 (2), 152-159.
[15] Vynnyts'kyi B.V., Khats' R.V. Completeness and minimality of systems of Bessel functions. Ufa Math. J. 2013, 5 (2), 131-141. doi:10.13108/2013-5-2-131
[16] Vynnyts'kyi B.V., Khats' R.V. On the completeness and minimality of sets of Bessel functions in weighted L^{2}-spaces. Eurasian Math. J. 2015, 6 (1), 123-131.
[17] Vynnyts'kyi B.V., Khats' R.V. A remark on basis property of systems of Bessel and Mittag-Leffler type functions. J. Contemp. Math. Anal. 2015, 50 (6), 300-305. doi:10.3103/S1068362315060060
[18] Vynnyts'kyi B.V., Khats' R.V. Complete biorthogonal systems of Bessel functions. Mat. Stud. 2017, 48 (2), 150-155. doi:10.15330/ms.48.2.150-155
[19] Vynnyts'kyi B.V., Khats' R.V., Sheparovych I.B. Unconditional bases of systems of Bessel functions. Eurasian Math. J. 2020, 11 (4), 76-86. doi:10.32523/2077-9879-2020-11-4-76-86
[20] Vynnyts'kyi B.V., Shavala O.V. Boundedness of solutions of a second-order linear differential equation and a boundary value problem for Bessel's equation. Mat. Stud. 2008, 30 (1), 31-41. (in Ukrainian)
[21] Vynnyts'kyi B.V., Shavala O.V. Some properties of boundary value problems for Bessel's equation. Math. Bull. Shevchenko Sci. Soc. 2013, 10, 169-172.
[22] Watson G.N. A treatise on the theory of Bessel functions. Cambridge University Press, Cambridge, 1944.

Хаць Р.В. Повнота систем функиій Бесселя індексу -5/2 // Карпатські матем. публ. - 2024. Т.16, №1. - С. 93-102.

Нехай $L^{2}\left((0 ; 1) ; x^{4} d x\right)$ - ваговий простір Лебега всіх вимірних функцій $f:(0 ; 1) \rightarrow \mathbb{C}$, для яких $\int_{0}^{1} t^{4}|f(t)|^{2} d t<+\infty, J_{-5 / 2}$ - функція Бесселя першого роду індексу $-5 / 2$ i $\left(\rho_{k}\right)_{k \in \mathbb{N}}$ послідовність різних відмінних від нуля комплексних чисел. Знайдено необхідні та достатні умови повноти системи $\left\{\rho_{k}^{2} \sqrt{x \rho_{k}} J_{-5 / 2}\left(x \rho_{k}\right): k \in \mathbb{N}\right\}$ у просторі $L^{2}\left((0 ; 1) ; x^{4} d x\right)$ в термінах цілої функції, множина нулів якої співпадає з послідовністю $\left(\rho_{k}\right)_{k \in \mathbb{N}}$. При цьому, досліджено інтегральне зображення деякого класу $E_{4,+}$ парних цілих функцій експоненційного типу $\sigma \leq 1$. Це доповнює аналогічні результати Б. Винницького, В. Дільного, О. Шавали та автора статті про апроксимаційні властивості систем функцій Бесселя з від'ємним півцілим індексом, меншим за -1 .

Ключові слова $і$ фрази: функція Бесселя, теорема Пелі-Вінера, теорема Фрагмена-Ліндельофа, теорема Фубіні, теорема Гурвіца, теорема Гана-Банаха, формула Єнсена, ціла функція експоненційного типу, повна система.

[^0]: Drohobych Ivan Franko State Pedagogical University, 24 Franko Str., 82100, Drohobych, Ukraine
 E-mail: khats@ukr.net

