ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2024, **16** (1), 93–102 doi:10.15330/cmp.16.1.93-102

Completeness of the systems of Bessel functions of index -5/2

Khats' R.V.

Let $L^2((0;1); x^4 dx)$ be the weighted Lebesgue space of all measurable functions $f: (0;1) \to \mathbb{C}$, satisfying $\int_0^1 t^4 |f(t)|^2 dt < +\infty$. Let $J_{-5/2}$ be the Bessel function of the first kind of index -5/2 and $(\rho_k)_{k\in\mathbb{N}}$ be a sequence of distinct nonzero complex numbers. Necessary and sufficient conditions for the completeness of the system $\{\rho_k^2 \sqrt{x\rho_k} J_{-5/2}(x\rho_k) : k \in \mathbb{N}\}$ in the space $L^2((0;1); x^4 dx)$ are found in terms of an entire function with the set of zeros coinciding with the sequence $(\rho_k)_{k\in\mathbb{N}}$. In this case, we study an integral representation of some class $E_{4,+}$ of even entire functions of exponential type $\sigma \leq 1$. This complements similar results on approximation properties of the systems of Bessel functions of negative half-integer index less than -1, due to B. Vynnyts'kyi, V. Dilnyi, O. Shavala and the author.

Key words and phrases: Bessel function, Paley-Wiener theorem, Phragmén-Lindelöf theorem, Fubini's theorem, Hurwitz's theorem, Hahn-Banach theorem, Jensen's formula, entire function of exponential type, complete system.

Drohobych Ivan Franko State Pedagogical University, 24 Franko Str., 82100, Drohobych, Ukraine E-mail: khats@ukr.net

Introduction

Let $L^2(X)$ be the space of all measurable functions $f : X \to \mathbb{C}$ on a measurable set $X \subseteq \mathbb{R}$ with the norm

$$||f||_{L^2(X)}^2 := \int_X |f(x)|^2 dx.$$

Let $\gamma \in \mathbb{R}$ and $L^2((0;1); t^{\gamma}dt)$ be the weighted Lebesgue space of all measurable functions $f: (0;1) \to \mathbb{C}$, satisfying

$$\int_0^1 t^\gamma \big| f(t) \big|^2 \, dt < +\infty.$$

Let (see, for example, [2, p. 4], [12, p. 345], [22, p. 40])

$$J_{\nu}(z) = \sum_{k=0}^{\infty} \frac{(-1)^k (z/2)^{\nu+2k}}{k! \Gamma(\nu+k+1)}, \qquad z = x + iy = r e^{i\varphi},$$

be the Bessel function of the first kind of index $\nu \in \mathbb{R}$, where Γ is the gamma function. By Hurwitz's theorem (see [2, p. 59], [22, p. 483]), for $\nu > 1$ the function $J_{-\nu}$ has infinitely many real zeros and also $2[\nu]$ pairwise conjugate complex zeros, among them two pure imaginary zeros, when $[\nu]$ is an odd integer. Let ρ_k , $k \in \mathbb{N}$, be the zeros of the function $J_{-\nu}$ for which $\operatorname{Im} \rho_k > 0$ if $\rho_k \in \mathbb{C}$ or $\rho_k > 0$ if $\rho_k \in \mathbb{R}$.

УДК 517.5, 517.9

²⁰²⁰ Mathematics Subject Classification: 42C30, 33C10, 30B60, 30D20, 44A15.

Since (see [12, p. 350], [22, p. 55]) $\sqrt{z}J_{-5/2}(z) = -\sqrt{2/\pi}z^{-2}(z^2\cos z - 3z\sin z - 3\cos z)$, we have that the function $\rho^2\sqrt{x\rho}J_{-5/2}(x\rho)$ belongs to the space $L^2((0;1); x^4dx)$ for every $\rho \in \mathbb{C}$. A system of elements $\{e_k : k \in \mathbb{N}\}$ in a separable Hilbert space \mathcal{H} is called complete (see [8, p. 131], [9, p. 4258]) if span $\{e_k : k \in \mathbb{N}\} = \mathcal{H}$.

Various approximation properties of the systems of Bessel functions has been studied in many papers (see, for example, [1–7, 10–22]). In particular, it is well known that the system $\{\sqrt{x}J_{\nu}(x\tilde{\rho}_{k}): k \in \mathbb{N}\}$ is an orthogonal basis for the space $L^{2}(0;1)$ if $\nu > -1$ and $(\tilde{\rho}_{k})_{k\in\mathbb{N}}$ is a sequence of positive zeros of J_{ν} (see [1, 2, 4, 12, 22]). It follows that if $\nu > -1$ and $(\tilde{\rho}_{k})_{k\in\mathbb{N}}$ is a sequence of positive zeros of J_{ν} , then the system $\{x^{-\nu}J_{\nu}(x\tilde{\rho}_{k}): k \in \mathbb{N}\}$ is complete and minimal in $L^{2}((0;1); x^{2\nu+1}dx)$. The system $\{\sqrt{x}J_{\nu}(x\tilde{\rho}_{k}): k \in \mathbb{N}\}$ is also complete (see [12, pp. 347, 356]) in $L^{2}(0;1)$ if $(\tilde{\rho}_{k})_{k\in\mathbb{N}}$ is a sequence of zeros of the function J'_{ν} . Besides, from [3] it follows that if $\nu > -1/2$ and $(\tilde{\rho}_{k})_{k\in\mathbb{N}}$ is a sequence of distinct positive numbers such that $\tilde{\rho}_{k} \leq \pi(k + \nu/2)$ for all sufficiently large $k \in \mathbb{N}$, then the system $\{\sqrt{x}J_{\nu}(x\tilde{\rho}_{k}): k \in \mathbb{N}\}$ is complete in $L^{2}(0;1)$.

Basis properties (completeness, minimality, basicity) of the above systems of Bessel functions and more general systems $\{x^{-p-1}\sqrt{x\widetilde{\rho}_k}J_\nu(x\widetilde{\rho}_k): k \in \mathbb{N}\}\$ in the space $L^2((0;1); x^{2p}dx)$, where $\nu \ge 1/2$, $p \in \mathbb{R}$ and $(\widetilde{\rho}_k)_{k\in\mathbb{N}}$ is a sequence of distinct nonzero complex numbers, have been studied in [6, 7, 15–19]. Those results are formulated in terms of sequences of zeros of functions from certain classes of entire functions.

Approximation properties of the systems of Bessel functions for $\nu < -1$, $\nu \notin \mathbb{Z}$, were investigated in [5,10,11,13,14,20,21]. In particular, at studying of one boundary value problem, in [20] (see also [21]) it was proven that the system $\{\rho_k \sqrt{x\rho_k} J_{-3/2}(x\rho_k) : k \in \mathbb{N}\}$ is complete in the space $L^2((0;1); x^2 dx)$, and the system $\{\rho_k \sqrt{x\rho_k} J_{-3/2}(x\rho_k) : k \in \mathbb{N} \setminus \{1\}\}$ is complete, minimal and is not a basis in this space, where $(\rho_k)_{k \in \mathbb{Z} \setminus \{0\}}$, $\rho_{-k} := -\rho_k$, is a sequence of zeros of the function $J_{-3/2}$.

In addition, in [10] it was shown that the system $\{\rho_k^2 \sqrt{x\rho_k} J_{-5/2}(x\rho_k) : k \in \mathbb{N} \setminus \{1; 2\}\}$ is complete and minimal in $L^2((0; 1); x^4 dx)$, where $(\rho_k)_{k \in \mathbb{N}}$ is a sequence of zeros of $J_{-5/2}$. Besides, in [11] it was established that the system $\{\rho_k^{\nu-1/2} \sqrt{x\rho_k} J_{-\nu}(x\rho_k) : k \in \mathbb{N} \setminus \{1; 2; ...; l\}\}$ is complete in $L^2((0; 1); x^{2\nu-1} dx)$ if $\nu = l + 1/2$, $l \in \mathbb{N}$ and $(\rho_k)_{k \in \mathbb{N}}$ is a sequence of zeros of $J_{-\nu}$. However, the problem of completeness of this system in $L^2((0; 1); x^{2\nu-1} dx)$, when $\nu = l + 1/2$, $l \in \mathbb{N}$ and $(\rho_k)_{k \in \mathbb{N}}$ is an arbitrary sequence of distinct nonzero complex numbers, remain open. In this direction, in [13] the authors obtained a criterion for the completeness and minimality of the system $\{\rho_k \sqrt{x\rho_k} J_{-3/2}(x\rho_k) : k \in \mathbb{N}\}$ in $L^2((0; 1); x^2 dx)$ with an arbitrary sequence of nonzero complex numbers $(\rho_k)_{k \in \mathbb{N}}$. In addition, in [14] it was proven that the system $\{x^{-2}(\rho_k \sqrt{x\rho_k} J_{-3/2}(x\rho_k) - \rho_1 \sqrt{x\rho_1} J_{-3/2}(x\rho_1)) : k \in \mathbb{N} \setminus \{1\}\}$ is also complete and minimal in $L^2((0; 1); x^2 dx)$, where $(\rho_k)_{k \in \mathbb{N}}$ is a sequence of distinct nonzero complex numbers of $\rho_k h \in \mathbb{N} \setminus \{1\}\}$ is also complete and minimal in $L^2((0; 1); x^2 dx)$, where $(\rho_k)_{k \in \mathbb{N}}$ is a sequence of distinct nonzero complex numbers such that $\rho_k^2 \neq \rho_m^2$ for $k \neq m$.

In this paper, using methods of [5–7,9,13–16], we study an integral representation of some class $E_{4,+}$ of even entire functions of exponential type $\sigma \leq 1$ (see Theorem 1) and find necessary and sufficient conditions for the completeness of the system $\{\psi_k : k \in \mathbb{N}\}$, where $\psi_k(x) := \rho_k^2 \sqrt{x\rho_k} J_{-5/2}(x\rho_k)$, in the space $L^2((0;1); x^4 dx)$ in terms of an entire function with the set of zeros coinciding with the sequence of distinct nonzero complex numbers $(\rho_k)_{k \in \mathbb{N}}$ (see Theorems 2–8). This complements the results of papers [3,5,10,11,13,14,20,21].

1 Preliminaries

An entire function *G* is said to be of exponential type $\sigma \in [0; +\infty)$ (see [8, p. 4], [9, p. 4262]), if for any $\varepsilon > 0$ there exists a constant $c(\varepsilon)$ such that

$$|G(z)| \le c(\varepsilon) \exp((\sigma + \varepsilon)|z|)$$

for all $z \in \mathbb{C}$.

Denote by PW_{σ}^2 the set of all entire functions of exponential type $\sigma \in (0; +\infty)$ whose narrowing on \mathbb{R} belongs to the space $L^2(\mathbb{R})$, and by $PW_{\sigma,+}^2$ denote the class of even entire functions from PW_{σ}^2 . According to the Paley-Wiener theorem (see [8, p. 69], [9, p. 4263]), the class PW_{σ}^2 coincides with the class of functions *G* admitting the representation

$$G(z) = \int_{-\sigma}^{\sigma} e^{itz} g(t) \, dt, \qquad g \in L^2(-\sigma;\sigma).$$

and the class $PW_{\sigma,+}^2$ consists of the functions *G* representable in the form

$$G(z) = \int_0^\sigma \cos(tz)g(t) \, dt, \qquad g \in L^2(0;\sigma).$$

Moreover, $\|g\|_{L^2(0;\sigma)} = \sqrt{2/\pi} \|G\|_{L^2(0;+\infty)}$ and

$$g(t) = \frac{2}{\pi} \int_0^{+\infty} G(z) \cos(tz) \, dz.$$

Let $\log^+ x = \max(0; \log x)$ for x > 0. Here and subsequently, by c_1, c_2, \ldots we denote arbitrary positive constants. To prove our main results we need the following auxiliary lemmas.

Lemma 1 ([5, p. 6]). Let an entire function Q be defined by the formula

$$Q(z) = \sqrt{\frac{2}{\pi}} \int_0^1 \left(-z^2 t^2 \cos(tz) + 3tz \sin(tz) + 3\cos(tz) \right) q(t) dt, \qquad q \in L^2(0;1).$$
(1)

Then for all $z = x + iy = re^{i\varphi} \in \mathbb{C}$, we have

$$|Q(z)| \le c_1 \frac{e^{|\operatorname{Im} z|}}{\sqrt{1+|\operatorname{Im} z|}} (1+|z|)^2,$$

and *Q* is an even entire function of exponential type $\sigma \leq 1$.

Lemma 2 ([9, p. 4263]). Let *Q* be an entire function of exponential type $\sigma \le 1$ for which the integral

$$\int_{-\infty}^{+\infty} \frac{\log^+ |Q(x)|}{1+x^2} \, dx$$

exists and let $(\rho_k)_{k \in \mathbb{N}}$ be a sequence of nonzero roots of the function Q(z). Then

$$\sum_{k\in\mathbb{N}}\left|\operatorname{Im}rac{1}{
ho_k}
ight|<+\infty.$$

2 Main results

Our principal results are the following statements.

Theorem 1. An entire function *Q* has the representation

$$Q(z) = \int_0^1 z^2 \sqrt{tz} J_{-5/2}(tz) t^4 h(t) dt$$
(2)

with some function $h \in L^2((0;1); x^4 dx)$ if and only if it is an even entire function of exponential type $\sigma \leq 1$ such that

$$Q(0) = 3\sqrt{\frac{2}{\pi}} \int_0^1 t^2 h(t) \, dt,$$
(3)

$$\frac{Q'(z)}{z}\Big|_{z=0} = \sqrt{\frac{2}{\pi}} \int_0^1 t^4 h(t) \, dt,\tag{4}$$

and the function $z^{-1}(z^{-1}Q'(z))'$ belongs to the space $PW_{1,+}^2$. If these conditions are fulfilled, then

$$h(t) = \sqrt{\frac{2}{\pi}} \frac{1}{t^6} \int_0^{+\infty} \frac{1}{z} \left(\frac{Q'(z)}{z}\right)' \cos(tz) \, dz.$$

Proof. Necessity. Let *Q* has the representation (2) with some function $h \in L^2((0;1); x^4 dx)$. Since

$$z^{2}\sqrt{tz}J_{-5/2}(tz) = \sqrt{\frac{2}{\pi}} \frac{-z^{2}t^{2}\cos(tz) + 3tz\sin(tz) + 3\cos(tz)}{t^{2}},$$

we have

$$Q(z) = \sqrt{\frac{2}{\pi}} \int_0^1 \left(-z^2 t^2 \cos(tz) + 3tz \sin(tz) + 3\cos(tz) \right) t^2 h(t) dt, \quad Q(0) = 3\sqrt{\frac{2}{\pi}} \int_0^1 t^2 h(t) dt.$$

Therefore, by Lemma 1, the function Q is an even entire function of exponential type $\sigma \leq 1$, and

$$\begin{aligned} Q'(z) &= \sqrt{\frac{2}{\pi}} \int_0^1 \left(z^2 t \sin(tz) + z \cos(tz) \right) t^4 h(t) \, dt, \\ \frac{Q'(z)}{z} &= \sqrt{\frac{2}{\pi}} \int_0^1 \left(tz \sin(tz) + \cos(tz) \right) t^4 h(t) \, dt, \qquad \frac{Q'(z)}{z} \Big|_{z=0} = \sqrt{\frac{2}{\pi}} \int_0^1 t^4 h(t) \, dt, \\ \left(\frac{Q'(z)}{z} \right)' &= \sqrt{\frac{2}{\pi}} \int_0^1 z \cos(tz) t^6 h(t) \, dt, \qquad \frac{1}{z} \left(\frac{Q'(z)}{z} \right)' = \sqrt{\frac{2}{\pi}} \int_0^1 \cos(tz) t^4 q(t) \, dt, \end{aligned}$$

where $q(t) := t^2 h(t)$. Since $h \in L^2((0;1); x^4 dx)$, we have $q \in L^2(0;1)$, and in accordance with the Paley-Wiener theorem, the function $z^{-1}(z^{-1}Q'(z))'$ belongs to the space $PW_{1,+}^2$.

Sufficiency. If all the conditions of the theorem hold, then from the formula for the inverse Fourier cosine transformation it follows that the function

$$q(t) = \sqrt{\frac{2}{\pi}} \frac{1}{t^4} \int_0^{+\infty} \frac{1}{z} \left(\frac{Q'(z)}{z}\right)' \cos(tz) \, dz$$

belongs to the space $L^2(0;1)$, and

$$\left(\frac{Q'(z)}{z}\right)' = \sqrt{\frac{2}{\pi}} \int_0^1 z \cos(tz) t^4 q(t) \, dt.$$

Using Fubini's theorem, we get

$$\frac{Q'(z)}{z} - \frac{Q'(z)}{z}\Big|_{z=0} = \sqrt{\frac{2}{\pi}} \int_0^1 t^4 q(t) \, dt \int_0^z w \cos(tw) \, dw$$
$$= \sqrt{\frac{2}{\pi}} \int_0^1 \left(tz \sin(tz) + \cos(tz) - 1 \right) t^2 q(t) \, dt$$
$$= \sqrt{\frac{2}{\pi}} \int_0^1 \left(tz \sin(tz) + \cos(tz) - 1 \right) t^4 h(t) \, dt$$

where $h(t) = t^{-2}q(t) \in L^2((0;1); x^4 dx)$. Further, using (4), we obtain

$$Q'(z) = \sqrt{\frac{2}{\pi}} \int_0^1 \left(tz^2 \sin(tz) + z \cos(tz) \right) t^4 h(t) \, dt.$$

Furthermore, applying Fubini's theorem, we get

$$Q(z) - Q(0) = \sqrt{\frac{2}{\pi}} \int_0^1 t^4 h(t) dt \int_0^z \left(w \cos(tw) + tw^2 \sin(tw) \right) dw$$

= $\sqrt{\frac{2}{\pi}} \int_0^1 \left(-z^2 t^2 \cos(tz) + 3tz \sin(tz) + 3\cos(tz) - 3 \right) t^2 h(t) dt$

Hence, taking into account (3), we have

$$Q(z) = \sqrt{\frac{2}{\pi}} \int_0^1 \left(-z^2 t^2 \cos(tz) + 3tz \sin(tz) + 3\cos(tz) \right) t^2 h(t) \, dt = \int_0^1 z^2 \sqrt{tz} J_{-5/2}(tz) t^4 h(t) \, dt.$$

Thus, the theorem is proved

Thus, the theorem is proved.

Let $\tilde{E}_{4,+}$ be the class of entire functions Q that can be presented in the form (2) with some function $h \in L^2((0;1); x^4 dx)$, and let $E_{4,+}$ be the class of even entire functions Q of exponential type $\sigma \leq 1$ such that conditions (3), (4) are fulfilled with $h \in L^2((0;1); x^4 dx)$ and the function $z^{-1}(z^{-1}Q'(z))'$ belongs to the space PW_{1+}^2 .

Corollary 1. $\tilde{E}_{4,+} = E_{4,+}$.

Corollary 2. The class $E_{4,+}$ coincides with a set of entire functions Q representing in the form (1).

Remark 1. In [5], the class $E_{4,+}$ was described in terms of the existence of solutions of some differential equations. Also in [5], examples of entire functions $Q \in E_{4,+}$ are given.

Theorem 2. Let $(\rho_k)_{k \in \mathbb{N}}$ be a sequence of nonzero complex numbers such that $\rho_k^2 \neq \rho_n^2$ for $k \neq n$. For a system $\{\psi_k : k \in \mathbb{N}\}$ to be incomplete in the space $L^2((0;1); x^4 dx)$ it is necessary and sufficient that a sequence $(\rho_k)_{k \in \mathbb{Z} \setminus \{0\}}$, where $\rho_{-k} := -\rho_k$, $k \in \mathbb{N}$, is a subsequence of zeros of some nonzero entire function $Q \in E_{4,+}$.

Proof. According to Hahn-Banach theorem (see, e.g., [8, p. 131], [9, p. 4258]), the system $\{\psi_k : k \in \mathbb{N}\}$ is incomplete in $L^2((0;1); x^4 dx)$ if and only if there exists a nonzero function $h \in L^2((0;1); x^4 dx)$ such that

$$\int_0^1 \rho_k^2 \sqrt{x \rho_k} J_{-5/2}(x \rho_k) \, x^4 h(x) \, dx = 0$$

for all $k \in \mathbb{N}$. Hence, taking into account Theorem 1, we obtain the required proposition. Theorem 2 is proved. **Theorem 3.** Let $(\rho_k)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers such that $|\text{Im } \rho_k| \geq \delta |\rho_k|$ for all $k \in \mathbb{N}$ and some $\delta > 0$. If a system $\{\psi_k : k \in \mathbb{N}\}$ is complete in $L^2((0;1); x^4 dx)$, then

$$\sum_{k=1}^{\infty} \frac{1}{|\rho_k|} = +\infty.$$
(5)

Proof. Suppose, to the contrary, that the system $\{\psi_k : k \in \mathbb{N}\}$ is not complete in the space $L^2((0;1); x^4 dx)$. Then, by Theorem 2, there exists a nonzero entire function $Q \in E_{4,+}$ for which the sequence $(\rho_k)_{k \in \mathbb{Z} \setminus \{0\}}$ is a subsequence of zeros. By virtue of Corollary 2, the function Q is of the kind (1). Due to Lemma 1, we have $|Q(x)| \leq c_1(1+|x|)^2$ for all $x \in \mathbb{R}$. This implies

$$\int_{-\infty}^{+\infty} \frac{\log^+ |Q(x)|}{1+x^2} dx < +\infty.$$

Therefore, by Lemma 2, we get

$$\sum_{k\in\mathbb{N}}\Big|\operatorname{Im}\frac{1}{\rho_k}\Big|<+\infty.$$

Since $|\text{Im } \rho_k| \ge \delta |\rho_k|, \delta > 0$, for all $k \in \mathbb{N}$, and

$$\left|\operatorname{Im} \frac{1}{
ho_k}\right| = rac{\left|\operatorname{Im}
ho_k\right|}{\left|
ho_k
ight|^2} \geq rac{\delta}{\left|
ho_k
ight|},$$

we have

$$\sum_{k=1}^{\infty}rac{1}{|
ho_k|}<+\infty.$$

This contradicts condition (5). Thus, the theorem is proved.

Theorem 4. Let $(\rho_k)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers such that $\rho_k^2 \neq \rho_m^2$ for $k \neq m$. Let a sequence $(\rho_k)_{k \in \mathbb{Z} \setminus \{0\}}$, where $\rho_{-k} := -\rho_k$, be a sequence of zeros of some even entire function G of exponential type $\sigma \leq 1$ for which on the rays $\{z : \arg z = \varphi_j\}$, $j \in \{1; 2; 3; 4\}$, $\varphi_1 \in [0; \pi/2)$, $\varphi_2 \in [\pi/2; \pi)$, $\varphi_3 \in (\pi; 3\pi/2]$, $\varphi_4 \in (3\pi/2; 2\pi)$, we have

$$|G(z)| \ge c_2 (1+|z|)^2 e^{|\operatorname{Im} z|}$$

Then the system $\{\psi_k : k \in \mathbb{N}\}$ is complete in $L^2((0; 1); x^4 dx)$.

Proof. Assume the converse. Then, according to Theorem 2, there exists a nonzero even entire function $Q \in E_{4,+}$ for which the sequence $(\rho_k)_{k \in \mathbb{Z} \setminus \{0\}}$ is a subsequence of zeros.

Let V(z) = Q(z)/G(z). Then *V* is an even entire function of order $\tau \le 1$, for which by Corollary 2 and Lemma 1, we obtain

$$|V(z)| \le c_3 \frac{1}{\sqrt{1+|\operatorname{Im} z|}}, \quad \arg z = \varphi_j, \quad j \in \{1; 2; 3; 4\}.$$

Therefore, according to the Phragmén-Lindelöf theorem (see [8, p. 38], [9, p. 4263]), we get $V(z) \equiv 0$. Hence $Q(z) \equiv 0$. This contradiction proves the theorem.

Corollary 3. Let $(\rho_k)_{k \in \mathbb{N}}$ be a sequence of zeros of the function $J_{-5/2}$. Then the system $\{\psi_k : k \in \mathbb{N}\}$ is complete in $L^2((0;1); x^4 dx)$.

Proof. Indeed, a sequence $(\rho_k)_{k \in \mathbb{Z} \setminus \{0\}}$, where $\rho_{-k} = -\rho_k$, is a sequence of zeros of an entire function $G(z) = -z^2 \cos z + 3z \sin z + 3 \cos z$, and this function satisfies the conditions of Theorem 4. Therefore, a system $\{\psi_k : k \in \mathbb{N}\}$ is complete in $L^2((0;1); x^4 dx)$. Corollary 3 is proved.

Theorem 5. Let $(\rho_k)_{k\in\mathbb{N}}$ be a sequence of distinct nonzero complex numbers such that $\rho_k^2 \neq \rho_m^2$ for $k \neq m$. Let a sequence $(\rho_k)_{k\in\mathbb{Z}\setminus\{0\}}$, where $\rho_{-k} := -\rho_k$, be a sequence of zeros of some even entire function $G \notin E_{4,+}$ of exponential type $\sigma \leq 1$ for which on the rays $\{z : \arg z = \varphi_j\}$, $j \in \{1; 2; 3; 4\}$, $\varphi_1 \in [0; \pi/2)$, $\varphi_2 \in [\pi/2; \pi)$, $\varphi_3 \in (\pi; 3\pi/2]$, $\varphi_4 \in (3\pi/2; 2\pi)$, the inequality

$$|G(z)| \ge c_4 (1+|z|)^{-\alpha} e^{|\operatorname{Im} z|}$$

holds with $\alpha < 1/2$. Then the system $\{\psi_k : k \in \mathbb{N}\}$ is complete in $L^2((0;1); x^4 dx)$.

Proof. Assume the converse. Then, according to Theorem 2, there exists a nonzero even entire function $Q \in E_{4,+}$ for which the sequence $(\rho_k)_{k \in \mathbb{Z} \setminus \{0\}}$ is a subsequence of zeros.

Let V(z) = Q(z)/G(z). Then *V* is an even entire function of order $\tau \le 1$, for which by Corollary 2 and Lemma 1, we get

$$|V(z)| \le c_5 \frac{(1+|z|)^{\alpha+2}}{\sqrt{1+|\operatorname{Im} z|}}, \quad \arg z = \varphi_j, \quad j \in \{1; 2; 3; 4\}$$

Since $\alpha + 2 < 5/2$, according to the Phragmén-Lindelöf theorem, the function *V* is a polynomial of degree $\zeta < 2$. However, *V* is an even entire function, and therefore the function *V* is a constant. Hence, $Q(z) = c_6 G(z)$ and $Q \notin E_{4,+}$. Thus, we have a contradiction and the proof of the theorem is completed.

Theorem 6. Let $(\rho_k)_{k \in \mathbb{N}}$ be a sequence of distinct nonzero complex numbers such that $\rho_k^2 \neq \rho_m^2$ for $k \neq m$. Let a sequence $(\rho_k)_{k \in \mathbb{Z} \setminus \{0\}}$, where $\rho_{-k} := -\rho_k$, be a sequence of zeros of some even entire function $F \notin E_{4,+}$ of exponential type $\sigma \leq 1$ such that

$$\left|F(x+i\eta)\right| \ge \delta |x|^{-\alpha}, \quad \delta > 0, \quad |x| > 1, \tag{6}$$

for some $\alpha < 0$ and $\eta \in \mathbb{R}$. Then the system $\{\psi_k : k \in \mathbb{N}\}$ is complete in $L^2((0;1); x^4 dx)$.

Proof. Let $F \notin E_{4,+}$ and the inequality (6) is true. Suppose, to the contrary, that the system $\{\psi_k : k \in \mathbb{N}\}$ is not complete in $L^2((0;1); x^4 dx)$. Then, by Theorem 2, there exists a nonzero even entire function $Q \in E_{4,+}$ which vanishes at the points ρ_k . However, the sequence $(\rho_k)_{k \in \mathbb{Z} \setminus \{0\}}$ is a sequence of zeros of an even entire function $F(z) \notin E_{4,+}$ of exponential type $\sigma \leq 1$. Therefore, T(z) = Q(z)/F(z) is an even entire function of order $\tau \leq 1$. Since $Q \in E_{4,+}$, taking into account Corollary 2 and Lemma 1, we obtain

$$|Q(x+i\eta)| \le c_7 \frac{e^{|\eta|}}{\sqrt{1+|\eta|}} \left(1+\sqrt{x^2+\eta^2}\right)^2, \quad x \in \mathbb{R}.$$

Using (6), we get

$$|T(x+i\eta)| \leq c_8 (1+|x|)^{2+\alpha}, \quad x \in \mathbb{R}.$$

In view of this, we have that T(z) is a polynomial of degree $\zeta < 2$. Further, since T is an even entire function, then $T(z) = c_9$. Furthermore, $F(z) = c_{10}Q(z)$ and $F(z) \in E_{4,+}$. This contradiction concludes the proof of the theorem.

Let n(t) be the number of points of the sequence $(\rho_k)_{k \in \mathbb{N}} \subset \mathbb{C}$ satisfying the inequality $|\rho_k| \leq t$, i.e. $n(t) := \sum_{|\rho_k| \leq t} 1$, and let

$$N(r) := \int_0^r \frac{n(t)}{t} dt, \quad r > 0.$$

Theorem 7. Let $(\rho_k)_{k \in \mathbb{N}}$ be an arbitrary sequence of distinct nonzero complex numbers. If

$$\limsup_{r \to +\infty} \left(N(r) - \frac{2r}{\pi} + \frac{1}{2}\log r - 2\log(1+r) \right) = +\infty,$$

then the system $\{\psi_k : k \in \mathbb{N}\}$ is complete in $L^2((0; 1); x^4 dx)$.

Proof. It suffices to assume the incompleteness of the system $\{\psi_k : k \in \mathbb{N}\}$ and prove that

$$\limsup_{r \to +\infty} \left(N(r) - \frac{2r}{\pi} + \frac{1}{2}\log r - 2\log(1+r) \right) < +\infty.$$
(7)

By virtue of Theorem 2, there exists a nonzero even entire function $Q \in E_{4,+}$ of exponential type $\sigma \leq 1$ for which the sequence $(\rho_k)_{k \in \mathbb{N}}$ is a subsequence of zeros. We may consider that Q(0) = 1. Then, consecutively applying the Jensen formula (see [8, p. 10], [9, p. 4316]), Corollary 2 and Lemma 1, we obtain

$$\begin{split} N(r) &\leq \frac{1}{2\pi} \int_{0}^{2\pi} \log \left| Q(re^{i\varphi}) \right| d\varphi \\ &\leq c_{11} + \frac{1}{2\pi} \int_{0}^{2\pi} \left(r |\sin\varphi| - \frac{1}{2} \log \left(1 + r |\sin\varphi| \right) + 2 \log(1 + r) \right) d\varphi \\ &\leq c_{11} + \frac{1}{2\pi} \int_{0}^{2\pi} \left(r |\sin\varphi| - \frac{1}{2} \log r - \frac{1}{2} \log |\sin\varphi| + 2 \log(1 + r) \right) d\varphi \\ &= \frac{2r}{\pi} - \frac{1}{2} \log r + 2 \log(1 + r) + c_{12}, \quad r > 0, \end{split}$$

whence it follows (7). The theorem is proved.

Theorem 8. Let $(\rho_k)_{k\in\mathbb{N}}$ be a sequence of distinct nonzero complex numbers. Assume that $|\rho_k| \leq \Delta k + \beta + \alpha_k$ for $0 < \Delta < \frac{\pi}{2+\pi}, -\Delta < \beta < 1 - \frac{2\Delta}{\pi}(1+\pi)$. Let a sequence $(\alpha_k)_{k\in\mathbb{N}}$ be such that $\alpha_k \geq 0, \alpha_k = O(1)$ as $k \to +\infty$ and

$$\sum_{k=1}^\infty |lpha_{k+1}-lpha_k| < +\infty, \qquad \sum_{k=1}^\infty rac{lpha_k}{k} < +\infty.$$

Then the system $\{\psi_k : k \in \mathbb{N}\}$ is complete in $L^2((0;1); x^4 dx)$.

Proof. Let $\mu_k = \Delta k + \beta + \alpha_k$, $k \in \mathbb{N}$, and

$$n_1(t) = \sum_{\mu_k \le t} 1, \qquad N_1(r) = \int_0^r \frac{n_1(t)}{t} dt, \quad r > 0.$$

Then $n(t) \ge n_1(t)$, $N(r) \ge N_1(r)$ and $n_1(t) = m$ for $\Delta m + \beta + \alpha_m \le t < \Delta(m+1) + \beta + \alpha_{m+1}$ $(n_1(t) = 0 \text{ on } (0; \mu_1))$. Let $r \in [\mu_s; \mu_{s+1})$. Then $s = \frac{r}{\Delta} + O(1)$ as $r \to +\infty$.

Therefore, under the assumptions of the theorem, by analogy with [7, p. 894] (see also [6, p. 9]), we obtain

$$N_{1}(r) \geq \sum_{k=1}^{s-1} k \log \frac{\Delta(k+1) + \beta}{\Delta k + \beta} + O(1) - \left| \sum_{k=1}^{s-1} k \left(\log \frac{\Delta(k+1) + \beta + \alpha_{k+1}}{\Delta k + \beta + \alpha_{k}} - \log \frac{\Delta(k+1) + \beta}{\Delta k + \beta} \right) \right|$$

$$\geq \frac{r}{\Delta} - \left(\frac{1}{2} + \frac{\beta}{\Delta} \right) \log r - c_{13} \sum_{k=1}^{\infty} \left(|\alpha_{k+1} - \alpha_{k}| + \frac{\alpha_{k}}{k} \right) + O(1) \geq \frac{r}{\Delta} - \left(\frac{1}{2} + \frac{\beta}{\Delta} \right) \log r + O(1),$$

as $r \to +\infty$. In view of this, for $0 < \Delta < \frac{\pi}{2+\pi}$ and $-\Delta < \beta < 1 - \frac{2\Delta}{\pi}(1+\pi)$, we get

$$\begin{split} \limsup_{r \to +\infty} \left(N(r) - \frac{2r}{\pi} + \frac{1}{2} \log r - 2 \log(1+r) \right) \\ &\geq \limsup_{r \to +\infty} \left(N_1(r) - \frac{2r}{\pi} + \frac{1}{2} \log r - 2 \log(1+r) \right) \\ &\geq \limsup_{r \to +\infty} \left(\frac{r}{\Delta} - \left(\frac{1}{2} + \frac{\beta}{\Delta} \right) \log r - \frac{2r}{\pi} + \frac{1}{2} \log r - 2 \log(1+r) + O(1) \right) \\ &\geq \limsup_{r \to +\infty} \left(r \left(\frac{1}{\Delta} - \frac{2}{\pi} \right) - \left(\frac{\beta}{\Delta} + 2 \right) \log(1+r) + O(1) \right) \\ &\geq \limsup_{r \to +\infty} \left(r \left(\frac{1}{\Delta} - \frac{2}{\pi} - \frac{\beta}{\Delta} - 2 \right) + O(1) \right) = +\infty. \end{split}$$

Finally, according to Theorem 7, we obtain the required proposition. The proof of theorem is completed.

References

- Abreu L.D. Completeness, special functions and uncertainty principles over q-linear grids. J. Phys. A: Math. Gen. 2006, 39 (47), 14567–14580. doi:10.1088/0305-4470/39/47/004
- [2] Bateman H., Erdélyi A. Higher transcendental functions, Vol. II. McGraw-Hill, New York-Toronto-London, 1953.
- [3] Boas R.P., Pollard H. Complete sets of Bessel and Legendre functions. Ann. of Math. (2) 1947, 48 (2), 366–384. doi:10.2307/1969177
- [4] Hochstadt H. The mean convergence of Fourier-Bessel series. SIAM Rev. 1967, 9, 211–218.
- [5] Khats' R.V. Integral representation of one class of entire functions. Armen. J. Math. 2022, 14 (1), 1–9. doi: 10.52737/18291163-2022.14.1-1-9
- [6] Khats' R.V. On conditions of the completeness of some systems of Bessel functions in the space $L^2((0;1); x^{2p} dx)$. Azerb. J. Math. 2021, **11** (1), 3–10.
- [7] Khats' R.V. Completeness conditions of systems of Bessel functions in weighted L²-spaces in terms of entire functions. Turkish J. Math. 2021, 45 (2), 890–895. doi:10.3906/mat-2101-76
- [8] Levin B.Ya. Lectures on entire functions. In: Lyubarskii Yu., Sodin M., Tkachenko V. (Eds.) Transl. Math. Monogr. Amer. Math. Soc., Providence, R.I., 150, 1996.
- [9] Sedletskii A.M. Analytic Fourier transforms and exponential approximations. I. J. Math. Sci. 2005, 129 (6), 4251–4408. doi:10.1007/s10958-005-0349-y
- Shavala O.V. On some approximation properties of the Bessel functions of order -5/2. Mat. Stud. 2015, 43 (2), 180–184. (in Ukrainian) doi:10.15330/ms.43.2.180-184

- Shavala O.V. On completeness of systems of functions generated by the Bessel function. Bukovinian Math. J. 2017, 5 (3–4), 168–171. (in Ukrainian)
- [12] Vladimirov V.S. Equations of Mathematical Physics. Nauka, Moscow, 1981. (in Russian)
- [13] Vynnyts'kyi B.V., Dilnyi V.M. On approximation properties of one trigonometric system. Russ. Math. 2014, 58 (11), 10–21. doi:10.3103/S1066369X14110024
- [14] Vynnyts'kyi B.V., Khats' R.V. Some approximation properties of the systems of Bessel functions of index -3/2. Mat. Stud. 2010, 34 (2), 152–159.
- [15] Vynnyts'kyi B.V., Khats' R.V. Completeness and minimality of systems of Bessel functions. Ufa Math. J. 2013, 5 (2), 131–141. doi:10.13108/2013-5-2-131
- [16] Vynnyts'kyi B.V., Khats' R.V. On the completeness and minimality of sets of Bessel functions in weighted L²-spaces. Eurasian Math. J. 2015, 6 (1), 123–131.
- [17] Vynnyts'kyi B.V., Khats' R.V. A remark on basis property of systems of Bessel and Mittag-Leffler type functions. J. Contemp. Math. Anal. 2015, 50 (6), 300–305. doi:10.3103/S1068362315060060
- [18] Vynnyts'kyi B.V., Khats' R.V. Complete biorthogonal systems of Bessel functions. Mat. Stud. 2017, 48 (2), 150–155. doi:10.15330/ms.48.2.150-155
- [19] Vynnyts'kyi B.V., Khats' R.V., Sheparovych I.B. Unconditional bases of systems of Bessel functions. Eurasian Math. J. 2020, 11 (4), 76–86. doi:10.32523/2077-9879-2020-11-4-76-86
- [20] Vynnyts'kyi B.V., Shavala O.V. Boundedness of solutions of a second-order linear differential equation and a boundary value problem for Bessel's equation. Mat. Stud. 2008, **30** (1), 31–41. (in Ukrainian)
- [21] Vynnyts'kyi B.V., Shavala O.V. Some properties of boundary value problems for Bessel's equation. Math. Bull. Shevchenko Sci. Soc. 2013, 10, 169–172.
- [22] Watson G.N. A treatise on the theory of Bessel functions. Cambridge University Press, Cambridge, 1944.

Received 10.02.2022

Хаць Р.В. *Повнота систем функцій Бесселя індексу* −5/2 // Карпатські матем. публ. — 2024. — Т.16, №1. — С. 93–102.

Нехай $L^2((0;1); x^4 dx)$ — ваговий простір Лебега всіх вимірних функцій $f: (0;1) \to \mathbb{C}$, для яких $\int_0^1 t^4 |f(t)|^2 dt < +\infty$, $J_{-5/2}$ — функція Бесселя першого роду індексу -5/2 і $(\rho_k)_{k\in\mathbb{N}}$ — послідовність різних відмінних від нуля комплексних чисел. Знайдено необхідні та достатні умови повноти системи $\{\rho_k^2 \sqrt{x\rho_k} J_{-5/2}(x\rho_k) : k \in \mathbb{N}\}$ у просторі $L^2((0;1); x^4 dx)$ в термінах цілої функції, множина нулів якої співпадає з послідовністю $(\rho_k)_{k\in\mathbb{N}}$. При цьому, досліджено інтегральне зображення деякого класу $E_{4,+}$ парних цілих функцій експоненційного типу $\sigma \leq 1$. Це доповнює аналогічні результати Б. Винницького, В. Дільного, О. Шавали та автора статті про апроксимаційні властивості систем функцій Бесселя з від'ємним півцілим індексом, меншим за -1.

Ключові слова і фрази: функція Бесселя, теорема Пелі-Вінера, теорема Фрагмена-Ліндельофа, теорема Фубіні, теорема Гурвіца, теорема Гана-Банаха, формула Єнсена, ціла функція експоненційного типу, повна система.