Algebras of polynomials generated by linear operators

Abstract

Zaj F., Abtahi M. ${ }^{\text {® }}$ Let E be a Banach space and A be a commutative Banach algebra with identity. Let $\mathbb{P}(E, A)$ be the space of A-valued polynomials on E generated by bounded linear operators (an n-homogenous polynomial in $\mathbb{P}(E, A)$ is of the form $P=\sum_{i=1}^{\infty} T_{i}^{n}$, where $T_{i}: E \rightarrow A, 1 \leq i<\infty$, are bounded linear operators and $\left.\sum_{i=1}^{\infty}\left\|T_{i}\right\|^{n}<\infty\right)$. For a compact set K in E, we let $\mathbb{P}(K, A)$ be the closure in $\mathscr{C}(K, A)$ of the restrictions $\left.P\right|_{K}$ of polynomials P in $\mathbb{P}(E, A)$. It is proved that $\mathbb{P}(K, A)$ is an A-valued uniform algebra and that, under certain conditions, it is isometrically isomorphic to the injective tensor product $\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$, where $\mathcal{P}_{N}(K)$ is the uniform algebra on K generated by nuclear scalarvalued polynomials. The character space of $\mathbb{P}(K, A)$ is then identified with $\hat{K}_{N} \times \mathfrak{M}(A)$, where \hat{K}_{N} is the nuclear polynomially convex hull of K in E, and $\mathfrak{M}(A)$ is the character space of A.

Key words and phrases: vector-valued uniform algebra, polynomial on a Banach space, nuclear polynomial, polynomial convexity, tensor product.

School of Mathematics and Computer Sciences, Damghan University, PO Box 36715-364, Damghan, Iran
Corresponding author
E-mail: zaj.farzane@yahoo.com(Zaj F.), abtahi@du.ac.ir (Abtahi M.)

1 Introduction

Let E be a Banach space and A be a commutative unital Banach algebra, over the complex field \mathbb{C}. For a compact set K in E, let $\mathscr{C}(K, A)$ be the algebra of all continuous functions $f: K \rightarrow A$ equipped with uniform norm

$$
\begin{equation*}
\|f\|_{K}=\sup \{\|f(x)\|: x \in K\} . \tag{1}
\end{equation*}
$$

When $A=\mathbb{C}$, we write $\mathscr{C}(K)$ instead of $\mathscr{C}(K, \mathbb{C})$. Given an element $a \in A$, the same notation a is used for the constant function given by $a(x)=a$ for all $x \in K$, and A is regarded as a closed subalgebra of $\mathscr{C}(K, A)$. We denote by $\mathbf{1}$ the unit element of A, and identify \mathbb{C} with the closed subalgebra $\mathbb{C} \mathbf{1}=\{\alpha \mathbf{1}: \alpha \in \mathbb{C}\}$ of A. Therefore, every function $f \in \mathscr{C}(K)$ can be seen as the A-valued function $x \mapsto f(x) \mathbf{1}$. We use the same notation f for this A-valued function, and regard $\mathscr{C}(K)$ as a closed subalgebra of $\mathscr{C}(K, A)$. By an A-valued uniform algebra on K we mean a closed subalgebra A of $\mathscr{C}(K, A)$ that contains the constant functions and separates points of K (see [1,12]). A comprehensive discussion on complex function algebras appears in [5, Chapter 4].

We are mostly interested in those A-valued uniform algebras that are invariant under composition with characters of A. An A-valued uniform algebra A is called admissible if $\phi \circ f \in A$ whenever $f \in A$ and $\phi: A \rightarrow \mathbb{C}$ is a character of A. Recall that a character is just a nonzero multiplicative linear functional. Denoted by $\mathfrak{M}(A)$, the set of all characters of A, equipped with the Gelfand topology, is a compact Hausdorff space.

[^0]When A is admissible, we let \mathfrak{A} be the subalgebra of A consisting of scalar-valued functions, that is, $\mathfrak{A}=A \cap \mathscr{C}(K)$. In this case, $\mathfrak{A}=\{\phi \circ f: f \in A\}$ for every $\phi \in \mathfrak{M}(A)$. The algebra $\mathscr{C}(K, A)$ is admissible with $\mathfrak{A}=\mathscr{C}(K)$. It is well-known that $\mathscr{C}(K, A)$ is isometrically isomorphic to the injective tensor product $\mathscr{C}(K) \widehat{\otimes}_{\epsilon} A$, and that $\mathfrak{M}(\mathscr{C}(K, A))=K \times \mathfrak{M}(A)$ (see [8]). In general, given an admissible A-valued uniform algebra A, it is natural to ask whether the analogous equalities $A=\mathfrak{A} \widehat{\otimes}_{\epsilon} A$ and $\mathfrak{M}(\boldsymbol{A})=\mathfrak{M}(\mathfrak{A}) \times \mathfrak{M}(A)$ hold. In this paper, we investigate these questions for a certain A-valued uniform algebra that is generated by linear operators.

Remark 1. For an admissible A-valued uniform algebra A with $\mathfrak{A}=\mathscr{C}(K) \cap A$, let $\mathfrak{A} A$ denote the subalgebra of A generated by $\mathfrak{A} \cup A$. Indeed, $\mathfrak{A} A$ consists of elements of the form $f=f_{1} a_{1}+\cdots+f_{n} a_{n}$, where $f_{i} \in \mathfrak{A}$ and $a_{i} \in A$ for $1 \leq i \leq n, n \in \mathbb{N}$. The following statements are equivalent.

1. $\boldsymbol{A}=\mathfrak{A} \widehat{\otimes}_{\epsilon} A$ (isometrically isomorphic).
2. The subalgebra $\mathfrak{A} A$ is dense in A.

In fact, the mapping $\Lambda_{0}: f \otimes a \mapsto f a$ defines a homomorphism of $\mathfrak{A} \otimes A$ onto $\mathfrak{A} A$, and, using Hahn-Banach theorem, we have

$$
\begin{aligned}
\left\|\Lambda_{0}\left(\sum_{i=1}^{n} f_{i} \otimes a_{i}\right)\right\|_{K} & =\sup _{x \in K}\left\|\sum_{i=1}^{n} f_{i}(x) a_{i}\right\|=\sup _{x \in K} \sup _{\phi \in A_{1}^{*}}\left|\sum_{i=1}^{n} f_{i}(x) \phi\left(a_{i}\right)\right| \\
& =\sup _{\phi \in A_{1}^{*}}\left\|\sum_{i=1}^{n} f_{i}(\cdot) \phi\left(a_{i}\right)\right\|_{K}=\sup _{\phi \in A_{1}^{*}} \sup _{\psi \in \mathfrak{R}_{1}^{*}}\left|\psi\left(\sum_{i=1}^{n} f_{i}(\cdot) \phi\left(a_{i}\right)\right)\right| \\
& =\sup _{\psi \in \mathfrak{R}_{1}^{*}} \sup _{\phi \in A_{1}^{*}}\left|\sum_{i=1}^{n} \psi\left(f_{i}\right) \phi\left(a_{i}\right)\right|=\left\|\sum_{i=1}^{n} f_{i} \otimes a_{i}\right\|_{\epsilon},
\end{aligned}
$$

where \mathfrak{A}_{1}^{*} and A_{1}^{*} denote the unit balls of \mathfrak{A}^{*} and A^{*}, respectively. Therefore, Λ_{0} extends to an isometry of $\mathfrak{A} \widehat{\otimes}_{\epsilon} A$ onto $\overline{\mathfrak{A} A}$. Given $f \in \mathfrak{A}$ and $a \in A$, we may identify the A-valued function $f a$ with the elementary tensor $f \otimes a$.

Remark 2 ([10]). It is always possible to define a product $(a, b) \mapsto a b$ on the Banach space E in order to make it an algebra with identity. Indeed, take a nonzero functional $\psi \in E^{*}$ and a vector $e \in E$ such that $\psi(e) \neq 0$ and $\|e\|=1$. Then $E=\operatorname{ker} \psi \oplus \mathbb{C} e$. For $a, b \in E$, write $a=x+\psi(a) e$ and $b=y+\psi(b) e$, with $x, y \in \operatorname{ker} \psi$, and define $a b=\psi(b) x+\psi(a) y+\psi(a) \psi(b) e$. This makes E an algebra with identity e. Define a norm on E by $\|a\|_{1}=|\psi(a)|+\|x\|$, where $a=x+\psi(a) e$. Then, $\|\cdot\|_{1}$ is an equivalent norm on E making it a commutative unital Banach algebra. This observation allows us to consider $\mathscr{C}(K, E)$ as a Banach algebra, even if the Banach space E is not assumed to be an algebra in the first place.

In this paper, we consider the space $\mathbb{P}(E, A)$ of all A-valued polynomials on E generated by bounded linear operators $T: E \rightarrow A$. By definition, an n-homogenous polynomial P in $\mathbb{P}(E, A)$ is of the form $P=\sum_{i=1}^{\infty} T_{i}^{n}$, where $\left(T_{i}\right)$ is a sequence of bounded linear operators of E into A such that $\sum_{i=1}^{\infty}\left\|T_{i}\right\|^{n}<\infty$. This class of polynomials was introduced in [10] with further study carried out in [7]. For a compact set K in E, we let $\mathbb{P}(K, A)$ be the closure in $\mathscr{C}(K, A)$ of the restrictions $\left.P\right|_{K}$ of polynomials $P \in \mathbb{P}(E, A)$. It is proved that $\mathbb{P}(K, A)$ is an
admissible A-valued uniform algebra on K with $\mathfrak{A}=\mathcal{P}_{N}(K)$, where $\mathcal{P}_{N}(K)$ represents the (complex) uniform algebra on K generated by nuclear polynomials. In fact, $f \in \mathcal{P}_{N}(K)$ if and only if there is a sequence $\left(P_{k}\right)$ of nuclear scalar-valued polynomials on E such that $P_{k} \rightarrow f$ uniformly on K. We prove that the following are equivalent:
(i) $\mathbb{P}(K, A)=\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$ for a Banach algebra A,
(ii) $\mathbb{P}(K, E)=\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} E$ (see Remark 2),
(iii) $I \in \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} E$, where $I: E \rightarrow E$ is the identity operator.

In this situation, the character space $\mathfrak{M}(\mathbb{P}(K, A))$ is identified with $\hat{K}_{N} \times \mathfrak{M}(A)$, where \hat{K}_{N} denotes the nuclear polynomially convex hull of K in E.

2 Algebras of polynomials generated by linear operators

First, let us recall basic definitions, notations and some results of the theory of polynomials on Banach spaces. For comprehensive texts, see $[6,11,13]$.

Let E and F be Banach spaces over \mathbb{C}. The space of all continuous symmetric n-linear operators $T: E^{n} \rightarrow F$ is denoted by $\mathcal{L}_{s}\left({ }^{n} E, F\right)$. For $T \in \mathcal{L}_{s}\left({ }^{n} E, F\right)$, define $\hat{T}(x)=T(x, \ldots, x)$, $x \in E$. A mapping $P: E \rightarrow F$ is said to be an n-homogeneous polynomial if $P=\hat{T}$ for some $T \in \mathcal{L}_{S}\left({ }^{n} E, F\right)$. For convenience, 0 -homogeneous polynomials are defined as constant mappings from E into F. The vector space of all n-homogeneous polynomials from E into F is denoted by $\mathcal{P}\left({ }^{n} E, F\right)$. The shortened notation $\mathcal{P}\left({ }^{n} E\right)$ is used when $F=\mathbb{C}$. A norm on $\mathcal{P}\left({ }^{n} E, F\right)$ is defined as

$$
\begin{equation*}
\|P\|=\sup \{\|P(x)\|:\|x\| \leq 1\}, \quad P \in \mathcal{P}\left({ }^{n} E, F\right) \tag{2}
\end{equation*}
$$

Continuity of P (and of the corresponding symmetric n-linear operator T) is then equivalent to finiteness of $\|P\|$. Given an n-homogeneous polynomial $P \in \mathcal{P}\left({ }^{n} E, F\right)$, the symmetric n-linear mapping T that gives rise to P can be recovered by any of several polarization formulae, e.g.,

$$
\begin{equation*}
T\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{2^{n} n!} \sum_{\epsilon_{j}= \pm 1} \epsilon_{1} \cdots \epsilon_{n} P\left(\sum_{j=1}^{n} \epsilon_{j} x_{j}\right) . \tag{3}
\end{equation*}
$$

As a special case, for $a, b \in A$ and $m, n \in \mathbb{N}$, we get

$$
\begin{equation*}
a^{m} b^{n}=\frac{1}{2^{m+n}(m+n)!} \sum_{\epsilon_{\ell}= \pm 1} \epsilon_{1} \cdots \epsilon_{m+n}\left(\sum_{\ell=1}^{m} \epsilon_{\ell} a+\sum_{\ell=m+1}^{m+n} \epsilon_{\ell} b\right)^{m+n} . \tag{4}
\end{equation*}
$$

Therefore, n-homogeneous polynomials and symmetric n-linear operators are in one-toone correspondence, and the polarization inequality $\|P\| \leq\|T\| \leq \frac{n^{n}}{n!}\|P\|$ shows that these spaces are isomorphic (see [6, Corollary 1.7 and Proposition 1.8]).
Notation. Let $T \in \mathcal{L}_{s}\left({ }^{n} E, F\right)$ and $x, y \in E$. For $0 \leq k \leq n$, let

$$
\begin{equation*}
T\left(x^{k}, y^{n-k}\right)=T(\underbrace{x, x, \ldots, x}_{k \text { times }}, \underbrace{y, y, \ldots, y}_{n-k \text { times }}) . \tag{5}
\end{equation*}
$$

Then, by [11, Theorem 1.8], we have the Leibniz formula

$$
\begin{equation*}
T\left((x+y)^{n}\right)=\sum_{k=1}^{n}\binom{n}{k} T\left(x^{k}, y^{n-k}\right) . \tag{6}
\end{equation*}
$$

2.1 The A-valued uniform algebra generated by linear operators

To continue, we restrict ourselves to Banach algebra valued polynomials. We let A be a commutative Banach algebra with identity 1. Adopting notations from [10], we denote by $\mathbb{P}\left({ }^{n} E, A\right)$ the space of n-homogeneous A-valued polynomials on E of the form

$$
\begin{equation*}
P(x)=\sum_{i=1}^{\infty} T_{i}(x)^{n}, \quad x \in E, \tag{7}
\end{equation*}
$$

where $\left(T_{i}\right)$ is a sequence in $\mathcal{L}(E, A)$ such that $\sum_{i=1}^{\infty}\left\|T_{i}\right\|^{n}<\infty$. A norm on $\mathbb{P}\left({ }^{n} E, A\right)$ is defined by

$$
\begin{equation*}
\|P\| \|=\inf \left\{\sum_{i=1}^{\infty}\left\|T_{i}\right\|^{n}: P=\sum_{i=1}^{\infty} T_{i}^{n}\right\} \tag{8}
\end{equation*}
$$

where the infimum is taken over all possible representations of P in (7). It is easy to verify that $\||\cdot|\|$ is a norm and that $\|P\| \leq\| \| P \|$ for all $P \in \mathbb{P}\left({ }^{n} E, A\right)$. The following shows that convergence with respect to this norm implies uniform convergence on compact sets.

Proposition 1. Let K be a compact set in E. Then there is $M>0$ such that

$$
\begin{equation*}
\|P\|_{K} \leq M^{n}\|P\| \|, \quad P \in \mathbb{P}\left({ }^{n} E, A\right) . \tag{9}
\end{equation*}
$$

Consequently, the series in (7) converges uniformly on K.
Proof. Since K is compact, there is a constant M such that $\|x\| \leq M$ for all $x \in K$. Therefore, $\|T x\| \leq M\|T\|$ for every $x \in K$ and $T \in \mathcal{L}(E, A)$. If a polynomial P is defined by (7), then

$$
\|P\|_{K}=\sup _{x \in K}\left\|\sum_{i=1}^{\infty} T_{i}(x)^{n}\right\| \leq \sup _{x \in K} \sum_{i=1}^{\infty}\left\|T_{i}(x)\right\|^{n} \leq M^{n} \sum_{i=1}^{\infty}\left\|T_{i}\right\|^{n} .
$$

The above inequality holds for any representation of P in (7). Taking infimum over all those representations, as in (8), we get

$$
\|P\|_{K} \leq M^{n}\|P\| .
$$

Also, we have

$$
\left\|P-\sum_{i=1}^{s} T_{i}^{n}\right\|_{K}=\left\|\sum_{i=s+1}^{\infty} T_{i}^{n}\right\|_{K} \leq M^{n}\left\|\sum_{i=s+1}^{\infty} T_{i}^{n}\right\| \leq M^{n} \sum_{i=s+1}^{\infty}\left\|T_{i}\right\|^{n} \rightarrow 0 \quad \text { as } s \rightarrow \infty .
$$

This shows that the series in (7) converges uniformly on K.
If A is replaced by \mathbb{C}, we reach the nuclear (scalar-valued) polynomials. By definition, an n-homogenous polynomial $P: E \rightarrow \mathbb{C}$ is called nuclear if it can be written in a form

$$
\begin{equation*}
P(x)=\sum_{i=1}^{\infty} \psi_{i}(x)^{n}, \quad x \in E, \tag{10}
\end{equation*}
$$

where $\left(\psi_{i}\right)$ is a sequence in E^{*} with $\sum_{i=1}^{\infty}\left\|\psi_{i}\right\|^{n}<\infty$. We denote by $\mathcal{P}_{N}\left({ }^{n} E\right)$ the space of all n-homogenous nuclear (scalar-valued) polynomials on E. In fact, $\mathcal{P}_{N}\left({ }^{n} E\right)=\mathbb{P}\left({ }^{n} E, \mathbb{C}\right)$. Nuclear polynomials between Banach spaces have been studied by many authors (see [2-4,15]).

We are now in a position to introduce the A-valued uniform algebras that these polynomials generate. Let $\mathbb{P}(E, A)$ be the space of all polynomials on E of the form $P=\sum_{k=0}^{n} P_{k}$, where $P_{k} \in \mathbb{P}\left({ }^{k} E, A\right), 0 \leq k \leq n, n \in \mathbb{N}$. In the same fashion, the space $\mathcal{P}_{N}(E)$ of all linear combinations of homogenous nuclear polynomials on E is defined. In fact, $\mathcal{P}_{N}(E)=\mathbb{P}(E, \mathbb{C})$.

Definition 1. Let K be a compact set in the Banach space E. Define

$$
\mathbb{P}_{0}(K, A)=\left\{\left.P\right|_{K}: P \in \mathbb{P}(E, A)\right\}, \quad \mathcal{P}_{N_{0}}(K)=\left\{\left.P\right|_{K}: P \in \mathcal{P}_{N}(E)\right\} .
$$

We define $\mathbb{P}(K, A)$ as the closure of $\mathbb{P}_{0}(K, A)$ in $\mathscr{C}(K, A)$. Similarly, $\mathcal{P}_{N}(K)$ is defined to be the closure of $\mathcal{P}_{N_{0}}(K)$ in $\mathscr{C}(K)$.

Therefore, $f \in \mathbb{P}(K, A)$ (respectively, $f \in \mathcal{P}_{N}(K)$) if and only if there is a sequence $\left(P_{k}\right)$ of polynomials in $\mathbb{P}(E, A)$ (respectively, $\left.\mathcal{P}_{N}(E)\right)$, such that $P_{k} \rightarrow f$ uniformly on K.

Clearly, $\mathbb{P}(K, A)$ is a closed subspace of $\mathscr{C}(K, A)$. We are aiming to show that $\mathbb{P}(K, A)$ is a subalgebra of $\mathscr{C}(K, A)$. To achieve this, one may think of proving that the space $\mathbb{P}(E, A)$ itself is an algebra (that is, if $P \in \mathbb{P}\left({ }^{m} E, A\right)$ and $Q \in \mathbb{P}\left({ }^{n} E, A\right)$, then $\left.P Q \in \mathbb{P}\left({ }^{m+n} E, A\right)\right)$. This manner is naturally expected. However, the authors do not currently have strong evidence supporting or opposing the possibility that $\mathbb{P}(E, A)$ is an algebra. Our approach, therefore, is to give a direct proof of the fact that $\mathbb{P}(K, A)$ is an algebra, as follows.

Theorem 1. For a compact set K in E, let $A=\mathbb{P}(K, A)$. Then A is an admissible A-valued uniform algebra on K with $\mathfrak{A}=\mathcal{P}_{N}(K)$.

Proof. Since $\mathbb{P}(E, A)$ contains 0-homogenous polynomials, we see that A contains the constant functions, and since $\mathbb{P}(E, A)$ contains the 1-homogenous polynomials of the form $P=\psi \mathbf{1}$ with $\psi \in E^{*}$, we see that A separates points of K. To prove that A is an algebra, we show that it is closed under multiplication, that is,

$$
\begin{equation*}
f, g \in A \Rightarrow f g \in A \tag{11}
\end{equation*}
$$

Given $f, g \in A$, there exist sequences $\left(P_{k}\right)$ and $\left(Q_{k}\right)$ of polynomials in $\mathbb{P}(E, A)$, such that $P_{k} \rightarrow f$ and $Q_{k} \rightarrow g$ uniformly on K, from which we get $P_{k} Q_{k} \rightarrow f g$ uniformly on K. Therefore, (11) reduces to the following implication

$$
\begin{equation*}
P, Q \in \mathbb{P}(E, A) \Rightarrow P Q \in A \tag{12}
\end{equation*}
$$

Since every polynomial in $\mathbb{P}(E, A)$ is a linear combination of homogenous polynomials, we may assume that $P \in \mathbb{P}\left({ }^{m} E, A\right)$ and $Q \in \mathbb{P}\left({ }^{n} E, A\right)$.

Consider two cases:
(1) $m, n \geq 1$,
(2) $m \geq 1$ and $n=0$.

In case (1), write $P=\sum_{i=1}^{\infty} S_{i}^{m}$ and $Q=\sum_{j=1}^{\infty} T_{j}^{n}$, where $\left(S_{i}\right)$ and $\left(T_{j}\right)$ are sequences of operators in $\mathcal{L}(E, A)$. By Proposition 1, these series converge uniformly on K, i.e.

$$
\lim _{s \rightarrow \infty}\left\|P-\sum_{i=1}^{s} S_{i}^{m}\right\|_{K}=\lim _{s \rightarrow \infty}\left\|Q-\sum_{j=1}^{s} T_{j}^{n}\right\|_{K}=0 .
$$

Therefore,

$$
\begin{equation*}
\lim _{s \rightarrow \infty}\left\|P Q-\sum_{i=1}^{s} S_{i}^{m} \sum_{j=1}^{s} T_{j}^{n}\right\|_{K}=\lim _{s \rightarrow \infty}\left\|P Q-\sum_{i=1}^{s} \sum_{j=1}^{s} S_{i}^{m} T_{j}^{n}\right\|_{K}=0 . \tag{13}
\end{equation*}
$$

Applying polarization formula (4), we have

$$
S_{i}^{m} T_{j}^{n}=\frac{1}{2^{m+n}(m+n)!} \sum_{\epsilon_{\ell}= \pm 1} \epsilon_{1} \cdots \epsilon_{m+n}\left(\sum_{\ell=1}^{m} \epsilon_{\ell} S_{i}+\sum_{\ell=m+1}^{m+n} \epsilon_{\ell} T_{j}\right)^{m+n}
$$

With suitable choice of scalars α_{k} and operators $U_{k}, 1 \leq k \leq 2^{m+n}$, we have

$$
S_{i}^{m} T_{j}^{n}=\sum_{k=1}^{2^{m+n}} \alpha_{k} U_{k}^{m+n}
$$

meaning that $S_{i}^{m} T_{j}^{n} \in \mathbb{P}\left({ }^{m+n} E, A\right)$. Now, (13) shows that $P Q$ is approximated (uniformly on K) by elements of $\mathbb{P}\left({ }^{m+n} E, A\right)$ and thus $P Q \in A$.

In case (2), write $P=\sum_{i=1}^{\infty} S_{i}^{m}$ and $Q=b$, where $b \in A$ is a constant. Since A is assumed to have an identity 1 , the proof of [10, Proposition 2.1] shows that if $\lambda_{k}=\frac{1}{m^{2}} e^{\frac{2 \pi k i}{m}}$ and $a_{k}=b+e^{\frac{2 \pi k i}{m}} \mathbf{1}, 1 \leq k \leq m$, then $b=\lambda_{1} a_{1}^{m}+\cdots+\lambda_{m} a_{m}^{m}$. Therefore, if

$$
b_{k}=\frac{e^{\frac{2 \pi k i}{m^{2}}}}{\sqrt[m]{m^{2}}}\left(b+e^{\frac{2 \pi k i}{m}} \mathbf{1}\right), \quad k=1,2, \ldots, m
$$

then $b=b_{1}^{m}+\cdots+b_{m}^{m}$. Now, for every $x \in E$, we have

$$
(P Q)(x)=P(x) b=\sum_{j=1}^{\infty} \psi_{j}(x)^{m} \sum_{k=1}^{m} b_{k}^{m}=\sum_{j=1}^{\infty} \sum_{k=1}^{m}\left(\psi_{j}(x) b_{k}\right)^{m}=\sum_{k=1}^{m} \sum_{j=1}^{\infty}\left(\psi_{j}(x) b_{k}\right)^{m} .
$$

Set $T_{j k}=\psi_{j} b_{k}$ and $P_{k}=\sum_{j=1}^{\infty} T_{j k}^{m}$. Then $P_{k} \in \mathbb{P}\left({ }^{m} E, A\right)$ and $P Q=P_{1}+\cdots+P_{m}$. Therefore, $P Q$ is an m-homogenous polynomial in $\mathbb{P}(E, A)$. In particular, $P Q \in A$.

Finally, we show that $\mathbb{P}(K, A)$ is admissible, that is,

$$
\begin{equation*}
f \in A, \phi \in \mathfrak{M}(A) \Rightarrow \phi \circ f \in A \tag{14}
\end{equation*}
$$

Given $f \in A$, let $\left(P_{k}\right)$ be a sequence of polynomials in $\mathbb{P}(E, A)$ such that $P_{k} \rightarrow f$ uniformly on K. For every $\phi \in \mathfrak{M}(A)$, since $\|\phi\| \leq 1$, we have

$$
\left\|\phi \circ P_{k}-\phi \circ f\right\|_{K} \leq\left\|P_{k}-f\right\|_{K}
$$

and thus $\phi \circ P_{k} \rightarrow \phi \circ f$ uniformly on K. Therefore, (14) reduces to the following implication

$$
\begin{equation*}
P \in \mathbb{P}(E, A), \phi \in \mathfrak{M}(A) \Rightarrow \phi \circ P \in A . \tag{15}
\end{equation*}
$$

Given $P \in \mathbb{P}(E, A)$, since it is a linear combination of homogenous polynomials, we may assume that P itself is an n-homogenous polynomial and write $P=\sum_{i=1}^{\infty} T_{i}^{n}$ for $T_{i} \in \mathcal{L}(E, A)$. Then, for every $x \in E$,

$$
(\phi \circ P)(x)=\phi\left(\sum_{i=1}^{\infty} T_{i}^{n}(x)\right)=\sum_{i=1}^{\infty} \phi\left(T_{i}(x)^{n}\right)=\sum_{i=1}^{\infty} \phi\left(T_{i}(x)\right)^{n}=\sum_{i=1}^{\infty}\left(\phi \circ T_{i}(x)\right)^{n} .
$$

We see that $\phi \circ P$ is a nuclear polynomial, i.e. $\phi \circ P \in \mathcal{P}_{N}(E)$. Set $\psi_{i}=\phi \circ T_{i}$ and $S_{i}=\psi_{i} \mathbf{1}$. Then $S_{i} \in \mathcal{L}(E, A),\left\|S_{i}\right\| \leq\left\|T_{i}\right\|$, and

$$
(\phi \circ P) \mathbf{1}=\sum_{i=1}^{\infty}\left(\psi_{i} \mathbf{1}\right)^{n}=\sum_{i=1}^{\infty} S_{i}^{n} \in \mathbb{P}(K, A) .
$$

We conclude that $\mathbb{P}(K, A)$ is admissible with $\mathfrak{A}=\mathcal{P}_{N}(K)$.

2.2 Representing as tensor product

We now investigate conditions that imply the equality $\mathbb{P}(K, A)=\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$. In the following, $I: E \rightarrow E$ is the identity operator.

Theorem 2. Let K be a compact set in the Banach space E. The following statements are equivalent.
(i) $\mathbb{P}(K, A)=\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$ for every unital Banach algebra A.
(ii) $\mathbb{P}(K, E)=\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} E$.
(iii) $I \in \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} E$.

Proof. The implication (i) \Rightarrow (ii) is trivial (see Remark 2). The implication (ii) \Rightarrow (iii) is also trivial since always $I \in \mathbb{P}(K, E)$.

We prove the implication (iii) \Rightarrow (i). Let A be a unital Banach algebra. In view of Remark 1 and Theorem 1, we always have $\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A \subset \mathbb{P}(K, A)$. To prove the reverse inclusion, since $\overline{\mathbb{P}_{0}(K, A)}=\mathbb{P}(K, A)$, we just need to show that $\mathbb{P}_{0}(K, A) \subset \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$, this is, $P \in \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$ for every polynomial $P \in \mathbb{P}(E, A)$. We argue by induction on $n=\operatorname{deg}(P)$.

The base case, $n=0$, trivially hold. In fact, if $\operatorname{deg}(P)=0$ then P is a constant polynomial and belongs to $\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$. For the inductive step, take $n \in \mathbb{N}$ and assume that

$$
\begin{equation*}
\text { every polynomial } Q \text { with } \operatorname{deg}(Q)<n \text { belongs to } \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A . \tag{16}
\end{equation*}
$$

Let P be a polynomial with $\operatorname{deg}(P)=n$. Subtracting from P a polynomial Q with $\operatorname{deg}(Q) \leq n-1$, if necessary, we may assume that P is an n-homogenous polynomial and that $P=\hat{T}$ for some $T \in \mathcal{L}_{s}\left({ }^{n} E, A\right)$. Let $\epsilon>0$. By the assumption, $I \in \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} E$. Therefore, by Remark 1 , there exist functions f_{1}, \ldots, f_{m} in $\mathcal{P}_{N}(K)$ and vectors a_{1}, \ldots, a_{m} in E such that

$$
\begin{equation*}
\left\|I(x)-\sum_{i=1}^{m} f_{i}(x) a_{i}\right\| \leq \epsilon, \quad x \in K . \tag{17}
\end{equation*}
$$

Using notation (5) and Leibniz formula (6), we get

$$
\begin{equation*}
T\left(\left(x-\sum_{i=1}^{m} f_{i}(x) a_{i}\right)^{n}\right)=\sum_{k=0}^{n}\binom{n}{k} T\left(x^{k},\left(-\sum_{i=1}^{m} f_{i}(x) a_{i}\right)^{n-k}\right) . \tag{18}
\end{equation*}
$$

Define

$$
g_{k}(x)=\binom{n}{k} T\left(x^{k},\left(-\sum_{i=1}^{m} f_{i}(x) a_{i}\right)^{n-k}\right) \quad \text { for } 0 \leq k \leq n-1 \text { and } x \in K .
$$

We have

$$
\begin{aligned}
& g_{n-1}(x)=-n \sum_{i=1}^{m} f_{i}(x) T\left(x^{n-1}, a_{i}\right) \\
& g_{n-2}(x)=n(n-1) \sum_{i, j=1}^{m} f_{i}(x) f_{j}(x) T\left(x^{n-2}, a_{i}, a_{j}\right) \\
& \vdots \\
& g_{0}(x)=(-1)^{n} \sum_{\alpha} \frac{n!}{\alpha!} \prod_{i=1}^{m} f_{i}(x)^{\alpha_{i}} T\left(a_{1}^{\alpha_{1}}, a_{2}^{\alpha_{2}}, \ldots, a_{m}^{\alpha_{m}}\right),
\end{aligned}
$$

where the last summation is taken over all multi-indices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ in \mathbb{N}_{0}^{m} such that $|\alpha|=\alpha_{1}+\cdots+\alpha_{m}=n$.

We see that each $g_{j}, 0 \leq j \leq n-1$, is an algebraic combination (multiplication and addition) of functions $f_{1}, f_{2}, \ldots, f_{m}$ in $\mathcal{P}_{N}(K)$, and some polynomials of degree j which, by assumption (16), belong to $\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$. Therefore, $g_{0}, g_{1}, \ldots, g_{n-1} \in \mathcal{P}_{N}(K) \hat{\otimes}_{\epsilon} A$.

On the other hand, for every $x \in K$,

$$
\begin{aligned}
\left\|P(x)+\sum_{j=0}^{n-1} g_{j}(x)\right\| & =\left\|T\left(x^{n}\right)+\sum_{k=0}^{n-1}\binom{n}{k} T\left(x^{k},\left(-\sum_{i=1}^{m} f_{i}(x) a_{i}\right)^{n-k}\right)\right\| \\
& =\left\|T\left(\left(x-\sum_{i=1}^{m} f_{i}(x) a_{i}\right)^{n}\right)\right\| \leq\|T\|\left\|x-\sum_{i=1}^{m} f_{i}(x) a_{i}\right\|^{n} \leq\|T\| \epsilon^{n},
\end{aligned}
$$

where $\|T\|$ is the operator norm of T in $\mathcal{L}_{s}(E, A)$. Since ϵ is arbitrary, this means that P is approximated uniformly on K by functions in $\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$. Therefore, $P \in \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$ and the inductive argument is complete.

We conclude that $\mathbb{P}(K, A)=\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$.
Recall (see, e.g., [11, Definition 27.3]) that a Banach space E has the approximation property if for every $\epsilon>0$ and every compact set K in E there exists a finite rank operator $T: E \rightarrow E$ such that $\|T(x)-x\|<\epsilon$ for every $x \in K$.

Proposition 2. Suppose that the Banach space E has the approximation property. Then $I \in \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} E$ for any compact set K in E.

Proof. Let $\epsilon>0$. By the approximation property, there is a finite-rank operator $T: E \rightarrow E$ such that $\|I-T\|_{K} \leq \epsilon$. The finite-rank operator T can be represented in a form

$$
T=\psi_{1} a_{1}+\cdots+\psi_{m} a_{m}
$$

where $\psi_{i} \in E^{*}, a_{i} \in E, 1 \leq i \leq m$. This means that $T \in \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} E$. Since ϵ is arbitrary, we conclude that $I \in \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} E$.

For the Banach algebra A, let us denote by A_{cc}^{*} the space A^{*} equipped with the topology of compact convergence, i.e. the topology of uniform convergence on compact subsets of A. Given a set S in A^{*}, we say that S generates A_{cc}^{*} if $\langle S\rangle$ is dense in A_{cc}^{*}, where $\langle S\rangle$ denotes the linear span of S in A^{*}.

Proposition 3. Suppose that the Banach algebra A has the approximation property. If $\mathfrak{M}(A)$ generates A_{cc}^{*}, then $\mathbb{P}(K, A)=\mathcal{P}_{N}(K) \hat{\otimes}_{\epsilon} A$ for any compact set K in any Banach space E.

Proof. Let K be a compact set in a Banach space E and take a function $f \in \mathbb{P}(K, A)$. First, we show that $\phi \circ f \in \mathcal{P}_{N}(K)$ for every $\phi \in A^{*}$. By Theorem 1, we have $\phi \circ f \in \mathcal{P}_{N}(K)$, for every $\phi \in \mathfrak{M}(A)$, whence $\phi \circ f \in \mathcal{P}_{N}(K)$ for every $\phi \in\langle\mathfrak{M}(A)\rangle$, the linear span of $\mathfrak{M}(A)$ in A^{*}. Since $\mathfrak{M}(A)$ generates $A_{\mathrm{c} \text {, }}^{*}$, given $\phi \in A^{*}$, there exists a net $\left(\phi_{\alpha}\right)$ in $\langle\mathfrak{M}(A)\rangle$ such that $\phi_{\alpha} \rightarrow \phi$ in the compact convergence topology of A^{*}. The set $f(K)$ is compact in A, and thus $\phi_{\alpha} \rightarrow \phi$ uniformly on $f(K)$. This implies that $\phi_{\alpha} \circ f \rightarrow \phi \circ f$ uniformly on K. Since $\phi_{\alpha} \circ f \in \mathcal{P}_{N}(K)$ for all α, we get $\phi \circ f \in \mathcal{P}_{N}(K)$.

Now, let $\epsilon>0$. Since A has the approximation property and $f(K)$ is compact in A, there exists a finite rank operator $T=\sum_{i=1}^{m} \phi_{i} b_{i}$ with $\phi_{i} \in A^{*}, b_{i} \in A, 1 \leq i \leq m, m \in \mathbb{N}$, such that

$$
\|y-T(y)\|=\left\|y-\sum_{i=1}^{m} \phi_{i}(y) b_{i}\right\| \leq \epsilon, \quad y \in f(K) .
$$

Replacing y with $f(x), x \in K$, we get

$$
\left\|f(x)-\sum_{i=1}^{m} \phi_{i} \circ f(x) b_{i}\right\| \leq \epsilon, \quad x \in K
$$

From the first part of the proof, we get $\sum_{i=1}^{m}\left(\phi_{i} \circ f\right) b_{i} \in \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$. Since $\epsilon>0$ is arbitrary, we have $f \in \mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} A$.

To support the above result, we present some examples.
Example 1. Suppose that X is a compact Hausdorff space and that $A=\mathscr{C}(X)$. It is well-known that A has the approximation property and that $\mathfrak{M}(A)=\left\{\delta_{x}: x \in X\right\}$, where $\delta_{x}: f \mapsto f(x)$ is the point mass measure at x. Indeed, $\mathfrak{M}(A)$ coincides with the set of extreme points of the unit ball A_{1}^{*}. By the Krein-Millman theorem, A_{1}^{*} equals the weak ${ }^{*}$ closed convex hull of $\mathfrak{M}(A)$. Therefore, given $\phi \in A_{1}^{*}$, there exists a net $\left(\phi_{\alpha}\right)$ in the convex hull of $\mathfrak{M}(A)$ such that $\phi_{\alpha} \rightarrow \phi$ in the weak* topology. Since (ϕ_{α}) is bounded, we get $\phi_{\alpha} \rightarrow \phi$ uniformly on compact sets. This means that $\phi_{\alpha} \rightarrow \phi$ in A_{cc}^{*}, and thus $\mathfrak{M}(A)$ generates A_{cc}^{*}. Now, by Proposition 3, we have $\mathbb{P}(K, \mathscr{C}(X))=\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} \mathscr{C}(X)$ for any compact set K in a Banach space E. It is worth noting that

$$
\mathcal{P}_{N}(K) \widehat{\otimes}_{\epsilon} \mathscr{C}(X)=\mathscr{C}(X) \widehat{\otimes}_{\epsilon} \mathcal{P}_{N}(K)=\mathscr{C}\left(X, \mathcal{P}_{N}(K)\right)
$$

Example 2. Let S be any nonempty set, and $A=\ell^{p}(S)$ for some $p \in(1, \infty)$. Then $A^{*}=\ell^{q}(S)$ with $1 / p+1 / q=1$. Define multiplication on A point-wise, that is, $(f g)(s)=f(s) g(s)$ for all $s \in S$. It is a matter of calculation to verify that

$$
\sum_{s \in S}|f(s)|^{p}|g(s)|^{p} \leq \sum_{s \in S}|f(s)|^{p} \sum_{s \in S}|g(s)|^{p}, \quad f, g \in A .
$$

Therefore $\left(A,\|\cdot\|_{p}\right)$ is a commutative Banach algebra. For every $s \in S$, the evaluation homomorphism $\phi_{s}: f \mapsto f(s)$ is a character of A. Conversely, let $\phi: A \rightarrow \mathbb{C}$ be a character. Suppose that χ_{s} is the characteristic function at $s \in S$. Then, given $f \in A$, we have $f=$ $\sum_{s \in S} f(s) \chi_{s}$, and thus $\phi(f)=\sum_{s \in S} f(s) \phi\left(\chi_{s}\right)$. Since $\phi \neq 0$, there must be a point $s_{0} \in S$ such that $\phi\left(\chi_{s_{0}}\right) \neq 0$. If $s \neq s_{0}$, then $\phi\left(\chi_{s}\right) \phi\left(\chi_{s_{0}}\right)=\phi\left(\chi_{s} \chi_{s_{0}}\right)=0$, so that $\phi\left(\chi_{s}\right)=0$. Also $\phi\left(\chi_{s_{0}}\right)^{2}=\phi\left(\chi_{s_{0}}\right)$ and thus $\phi\left(\chi_{s_{0}}\right)=1$. Therefore, we have

$$
\phi(f)=\sum_{s \in S} f(s) \phi\left(\chi_{s}\right)=f\left(s_{0}\right)=\phi_{s_{0}}(f)
$$

We conclude that $\mathfrak{M}(A)=\left\{\phi_{s}: s \in S\right\}$. The fact that $\langle\mathfrak{M}(A)\rangle$ is dense in $A^{*}=\ell^{q}(S)$ in the norm topology yields that $\mathfrak{M}(A)$ generates A_{cc}^{*}. Moreover, if S is countable then $\ell^{p}(S)$ has a Schauder basis and thus it has the approximation property.

2.3 The character space

Let K be a compact set in the Banach space E. The character space of a function algebra on K generated by a certain class \mathcal{P} of polynomials is closely related to the polynomially convex hull of K with respect to the given class \mathcal{P}.

Definition 2. The nuclear polynomially convex hull of K is defined as

$$
\begin{equation*}
\hat{K}_{N}=\left\{a \in E:|P(a)| \leq\|P\|_{K}, P \in \mathcal{P}_{N}(E)\right\} . \tag{19}
\end{equation*}
$$

It is said that K is nuclear polynomially convex if $K=\hat{K}_{N}$.
Theorem 3. The character space of $\mathcal{P}_{N}(K)$ is homeomorphic to \hat{K}_{N}, and $\mathcal{P}_{N}(K)$ is isometrically isomorphic to $\mathcal{P}_{N}\left(\hat{K}_{N}\right)$.
Proof. Let $a \in \hat{K}_{N}$. Given $f \in \mathcal{P}_{N}(K)$, there is a sequence $\left(P_{k}\right)$ of polynomials in $\mathcal{P}_{N_{0}}(K)$ such that $P_{k} \rightarrow f$ uniformly on K, and thus $\left|P_{k}(a)-P_{j}(a)\right| \leq\left\|P_{k}-P_{j}\right\|_{K} \rightarrow 0$ as $k, j \rightarrow \infty$.

This means that $\left(P_{k}(a)\right)$ is a Cauchy sequence in \mathbb{C}. Define $\phi_{a}(f)=\lim _{k \rightarrow \infty} P_{k}(a)$. If $\left(Q_{k}\right)$ is another sequence of polynomials in $\mathcal{P}_{N_{0}}(K)$ such that $Q_{k} \rightarrow f$ uniformly on K, then $\left|Q_{k}(a)-P_{k}(a)\right| \leq\left\|Q_{k}-P_{k}\right\|_{K} \rightarrow 0$. This shows that $\phi_{a}(f)$ is well-defined. An standard argument shows that $\phi_{a}(f+g)=\phi_{a}(f)+\phi_{a}(g)$ and $\phi_{a}(f g)=\phi_{a}(f) \phi_{a}(g)$ for all $f, g \in \mathcal{P}_{\mathrm{N}}(K)$. Therefore, $\phi_{a} \in \mathfrak{M}\left(\mathcal{P}_{N}(K)\right)$.

Conversely, assume that $\phi: \mathcal{P}_{N}(K) \rightarrow \mathbb{C}$ is a character. Consider the dual space E^{*} as a subspace of $\mathcal{P}_{N}(E)$ consisting of 1-homogenous polynomials. Then the restriction of ϕ to E^{*} is a linear functional on E^{*}. We show that ϕ is weak* continuous on norm bounded subsets of E^{*}. Let $\left(\psi_{\alpha}\right)$ be a bounded net in E^{*} that converges in the weak* topology to some $\psi_{0} \in E^{*}$. Then $\psi_{\alpha} \rightarrow \psi_{0}$ uniformly on K. Since ϕ is continuous with respect to $\|\cdot\|_{K}$, we get $\phi\left(\psi_{\alpha}\right) \rightarrow \phi\left(\psi_{0}\right)$. This shows that ϕ is weak ${ }^{*}$ continuous on bounded subsets of E^{*}, as desired. By [9, Corollary 4], ϕ is weak ${ }^{*}$ continuous on E^{*} and thus there is $a \in E$ such that $\phi(\psi)=\psi(a)$ for all $\psi \in E^{*}$. Now, take an n-homogenous nuclear polynomial $P=\sum_{i=1}^{\infty} \psi_{i}^{n}$ with $\psi_{i} \in E^{*}$ and $\sum_{i=1}^{\infty}\left\|\psi_{i}\right\|^{n}<\infty$. By Proposition 1, the series converges uniformly on K, and thus

$$
\phi(P)=\phi\left(\lim _{s \rightarrow \infty} \sum_{i=1}^{s} \psi_{i}^{n}\right)=\lim _{s \rightarrow \infty} \sum_{i=1}^{s} \phi\left(\psi_{i}\right)^{n}=\lim _{s \rightarrow \infty} \sum_{i=1}^{s} \psi_{i}(a)^{n}=P(a) .
$$

Note that $|P(a)|=|\phi(P)| \leq\|P\|_{K}$ for every $P \in \mathcal{P}_{N}(E)$, which shows that $a \in \hat{K}_{N}$. Thus $\phi=\phi_{a}$ on $\mathcal{P}_{N_{0}}(K)$, a dense subspace of $\mathcal{P}_{N}(K)$, whence $\phi=\phi_{a}$ on $\mathcal{P}_{N}(K)$. Finally, the mapping $\hat{K}_{N} \ni a \mapsto \phi_{a} \in \mathfrak{M}\left(\mathcal{P}_{N}(K)\right)$ is an embedding of K onto $\mathfrak{M}\left(\mathcal{P}_{N}(K)\right)$ (see [5, Chapter 4]).

We conclude this paper with the following result on the character space of $\mathbb{P}(K, A)$.
Theorem 4. The character space $\mathfrak{M}(\mathbb{P}(K, A))$ contains $\hat{K}_{N} \times \mathfrak{M}(A)$ as a closed subset. If either of the conditions in Theorem 2, Proposition 2 or Proposition 3 hold, then

$$
\mathfrak{M}(\mathbb{P}(K, A))=\hat{K}_{N} \times \mathfrak{M}(A)
$$

Proof. It follows from previous results and from Tomiyama theorem, proved in [14].

Acknowledgment

The authors are very thankful to the reviewer(s) for their careful reading and suggestions that improve the presentation of the paper.

References

[1] Abtahi M. Vector-valued characters on vector-valued function algebras. Banach J. Math. Anal. 2016, 10 (3), 608-620. doi:10.1215/17358787-3607486
[2] Carando D. Extendible polynomials on Banach spaces. J. Math. Anal. Appl. 1999, 233 (1), 359-372. doi: 10.1006/jmaa.1999.6319
[3] Carando D., Dimant V. Duality in spaces of nuclear and integral polynomials. J. Math. Anal. Appl. 2000, 241 (1), 107-121. doi:10.1006/jmaa.1999.6626
[4] Cilia R., Gutiérrez J.M. Nuclear and integral polynomials. J. Aust. Math. Soc. 2004, 76 (2), 269-280.
[5] Dales H.G. Banach Algebras and Automatic Continuity. In: London Mathematical Society Monographs, 24. Oxford Science Publications, Clarendon Press, Oxford University Press, New York, 2000.
[6] Dineen S. Complex Analysis on Infinite Dimensional Spaces. In: Kim M., Wendland K. (Eds.) Springer Monographs in Mathematics. Springer-Verlag, London, 1999.
[7] Galindo P., Lourenco M., Moraes L. Polynomials generated by linear operators. Proc. Amer. Math. Soc. 2004, 132 (10), 2917-2927. doi:10.1090/S0002-9939-04-07442-8
[8] Hausner A. Ideals in a certain Banach algebra. Proc. Amer. Math. Soc. 1957, 8 (2), 246-249. doi:10.2307/2033720
[9] Horváth J. Topological vector spaces and distributions. Vol. I. Addison-Wesley Publ., London, 1966.
[10] Lourenco M.L., Moraes L.A. A class of polynomials from Banach spaces into Banach algebras Klein-Gordon equations is studied in the Sobolev space Hs $=$ Hs. Publ. Res. Inst. Math. Sci. 2001, 37 (4), 521-529. doi: 10.2977/prims/ 1145477328
[11] Mujica J. Complex Analysis in Banach Spaces. North-Holland Mathematical Studies 120. In: Dover Books on Mathematics. North-Holland, Amesterdam, 1986.
[12] Nikou A., O’Farrell A.G. Banach algebras of vector-valued functions. Glasg. Math. J. 2014, 56 (2), 419-246. doi:10.1017/S0017089513000359
[13] Prolla J.B. Approximation of Vector-Valued Functions. North-Holland, Amsterdam, New York, Oxford, 1977.
[14] Tomiyama J. Tensor products of commutative Banach algebras. Tohoku Math. J. (2) 1960, 12, 147-154.
[15] Zalduendo I. Extending polynomials on Banach spaces - a survey. Rev. Un. Mat. Argentina 2005, 46 (2), 45-72.

Received 11.03.2022

Зай Ф., Абтахі М. Алгебри поліномів, породжені лінійними операторами // Карпатські матем. публ. — 2024. — Т.16, №1. — С. 309-319.

Нехай E - банаховий простір, а A - комутативна банахова алгебра з одиницею. Нехай $\mathbb{P}(E, A)$ - простір A-значних поліномів на E, породжених обмеженими лінійними операторами (n-однорідний поліном в $\mathbb{P}(E, A)$ має вигляд $P=\sum_{i=1}^{\infty} T_{i}^{n}$, де $T_{i}: E \rightarrow A, 1 \leq i<\infty$, є обмеженими лінійними операторами і $\left.\sum_{i=1}^{\infty}\left\|T_{i}\right\|^{n}<\infty\right)$. Для довільної компактної множини K в E позначимо через $\mathbb{P}(K, A)$ замикання в $\mathscr{C}(K, A)$ звужень $\left.P\right|_{K}$ поліномів P в $\mathbb{P}(E, A)$. Доведено, що $\mathbb{P}(K, A) \in A$-значною рівномірною алгеброю, яка за певних умов \in ізометрично ізоморфною ін'єктивному тензорному добутку $\mathcal{P}_{N}(К) \widehat{\otimes}_{\epsilon} A$, де $\mathcal{P}_{N}(K)$ - рівномірна алгебра на К, породжена ядерними скалярними поліномами. Тоді простір характерів простору $\mathbb{P}(K, A)$ ототожнюється з $\hat{K}_{N} \times \mathfrak{M}(A)$, де \hat{K}_{N} - ядерна поліноміальна опукла оболонка $К$ в E, а $\mathfrak{M}(A)$ простір характерів алгебри A.

Ключові слова і фррази: векторно-значна рівномірна алгебра, поліном на банаховому простоpi, ядерний поліном, поліноміальна опуклість, тензорний добуток.

[^0]: У $\Delta \mathrm{K} 517.98$
 2020 Mathematics Subject Classification: 46G25, 46J10, 46H05, 46J20.

