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The purpose of this paper is to introduce linear Diophantine anti-fuzzification of algebraic struc-

tures. In this regard, we define linear Diophantine anti-fuzzy (LDAF) substructures of a semigroup

and discuss some of its properties. Moreover, we characterize semigroups in terms of LDAF-ideals

and LDAF-bi-ideals. Finally, we apply the linear Diophantine anti-fuzzification to groups and find

a relationship between LDAF-subgroups of a group and its LDF-subgroups.

Key words and phrases: group, semigroup, linear Diophantine fuzzy set, LDAF-subgroup, LDAF-

subsemigroup, LDAF-ideal, LDAF-bi-ideal, LDAF-simple.

1 Tafila Technical University, Tafila, Jordan
2 Abu Dhabi University, Abu Dhabi, United Arab Emirates

E-mail: saba.alkaseasbeh@gmail.com (Al-Kaseasbeh S.), altahan.madeleine@gmail.com (Al Tahan M.)

Introduction

Over the past few decades, there has been a lot of discussion in the literature on associating

a fuzzy set to an algebraic object. Generally, an element’s membership in a set is determined by

whether or not it is a member of the set. Such a concept leaves open many real-life questions.

Fuzzy Set Theory was first presented by L.A. Zadeh [16] in 1965. The membership of an element

in a fuzzy set is a real number in the unit interval [0, 1]. The sum of an element’s degree of

membership and degree of non-membership in a fuzzy set is equal one. A. Rosenfeld [15]

introduced fuzzy subgroups of a group and R. Biswas [6] introduced anti-fuzzy subgroups of

a group. After that, the fuzzification and anti-fuzzification of algebraic structures grew and

became areas of research that grabbed many algebraists and set theorists. In 2020, H. Kamaci

[9] investigated the linear Diophantine fuzzy subsets of various algebraic structures. Finite

linear Diophantine fuzzy substructures of algebraic structures such as groups, rings and fields

were of great interest to him.

The linear Diophantine fuzzy subpolygroups of a polygroup and the concept of the

linear Diophantine fuzzy n-fold weak subalgebras of a BE-algebra were recently studied by

M. Al-Tahan et al. [1, 2]. In 2022, G. Muhiuddin et al. [13] implemented the idea of linear Dio-

phantine fuzzy sets in BCK/BCI-algebras. Motivated by the recent work on linear Diophantine

fuzzy substructures and the early study on anti-fuzzy algebraic structures, we introduce a new

class of linear Diophantine anti-fuzzy algebraic structures.

The following is the structure of our article on linear Diophantine anti-fuzzy subsets of

semigroups. In Section 2, we define linear Diophantine anti-fuzzy (LDAF) substructures of a

semigroup and discuss some properties. Moreover, we introduce a new relationship between

УДК 517.98
2020 Mathematics Subject Classification: 06F05, 06D72, 08A72.

© Al-Kaseasbeh S., Al Tahan M., 2024



104 Al-Kaseasbeh S., Al Tahan M.

linear Diophantine fuzzy sets and algebraic structures by using LDAF-ideals (bi-ideals) of a

semigroup. In Section 3, we apply the linear Diophantine anti-fuzzification to groups and find

a connection between LDAF-substructures of a group and its LDF-substructures.

1 Basic concepts

In this section, we introduce some fundamental concepts and results related to linear Dio-

phantine fuzzy sets, as well as to semigroups that are used throughout the paper. For more

related details, we refer to [3–8].

Definition 1 ([16]). Let Ω be a universal set, I = [0, 1] and µ : Ω → I be a validity function.

Then A =
{(

x, µ(x)
)

: x ∈ Ω
}

is a fuzzy set.

Definition 2 ([14]). Let Ω be a universal set, I = [0, 1] and U(X), V(x) ∈ I are degrees of be-

longingness and non-belongingness, respectively. Let α(x), β(x) ∈ I be reference parameters.

The degrees satisfy α(x) + β(x) ∈ I and α(x)U(x) + β(x)V(x) ∈ I for all x ∈ Ω. Then a linear

Diophantine fuzzy set (LDFS) D on Ω is described as follows

D =
{(

a,< U(a), V(a) >,< α(a), β(a) >
)

: a ∈ Ω
}

.

Remark 1. A fuzzy set A on a universal set Ω with a validity function µ is a special case of the

LDFS. This is easily seen as A =
{(

x,< µ(x), 0 >,< 1, 0 >

)

: x ∈ Ω
}

is an LDFS on Ω.

Definition 3 ([14]). Let Ω be a universal set and D1, D2 be LDFSs on Ω. Then

(1) the intersection D1 ∩ D2 of D1 and D2 is defined as

{(

x,< U1(x) ∧ U2(x), V1(x) ∨ V2(x) >,< α1(x) ∧ α2(x), β1(x) ∨ β2(x) >
)

: x ∈ Ω
}

;

(2) the union D1 ∪ D2 of D1 and D2 is defined as

{(

x,< U1(x) ∨ U2(x), V1(x) ∧ V2(x) >,< α1(x) ∨ α2(x), β1(x) ∧ β2(x) >
)

: x ∈ Ω
}

;

(3) the complement Dc
1 of D1 is defined as

Dc
1 =

{(

x,< V1(x), U1(x) >,< β1(x), α1(x) >
)

: x ∈ Ω
}

.

Here, “∨” represents the maximum and “∧” represents the minimum.

One can easily see that
(

Dc
1

)c
= D1.

Definition 4. Let A be a non-void set and

· : A × A → A

be a map. Then (A, ·) is a semigroup if “·” is associative on A, i.e. α · (β · γ) = (α · β) · γ

for all α, β, γ ∈ A.

A non-empty subset M of a semigroup A is called a subsemigroup of A if M is a semigroup.

A subsemigroup M of A is called a left ideal of A if AM ⊆ M and it is called a right ideal of A if

MA ⊆ M. An ideal is a left and a right ideal. A subsemigroup M of A is called a bi-ideal of A if

MAM ⊆ M. A semigroup is duo if every its left (right) ideal is an ideal.
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2 LDAF-substructures of semigroups

The study of linear Diophantine fuzzy subgroups of a group in [12], and linear Diophantine

fuzzy subpolygroups of a polygroup in [1] motivate us to work on linear Diophantine anti-

fuzzy (LDAF) substructures of a semigroup.

Let Ω be a universal set and D be an LDFS on Ω given as follows

D =
{

(

x,< U(x), V(x) >,< α(x), β(x) >
)

: x ∈ Ω
}

,

where U(X), V(x) ∈ [0, 1] are degrees of belongingness and non-belongingness, respectively,

and α(x), β(x) ∈ [0, 1] are reference parameters. The degrees satisfy α(x) + β(x) ≤ 1 and

α(x)U(x) + β(x)V(x) ≤ 1 for all x ∈ Ω. For x, y ∈ Ω, we have:

(i) D(x) ∧ D(y) =
(

< u, v >,< α, β >

)

, where u = U(x) ∧ U(y), v = V(x) ∨ V(y),

α = α(x) ∧ α(y), v = β(x) ∨ β(y),

(ii) D(x) ∨ D(y) =
(

< u, v >,< α, β >

)

, where u = U(x) ∨ U(y), v = V(x) ∧ V(y),

α = α(x) ∨ α(y), β = β(x) ∧ β(y),

(iii) D(x) ≤ D(y) means that U(x) ≤ U(y), V(x) ≥ V(y), α(x) ≤ α(y) and β(x) ≥ β(y).

Definition 5. Let (B, ·) be a semigroup and D be an LDFS of B. Then D is a linear Diophantine

anti-fuzzy subsemigroup (LDAF-subsemigroup) of B if

D(b1 · b2) ≤ D(b1) ∨ D(b2)

for all b1, b2 ∈ B.

Definition 6. Let (B, ·) be a semigroup and D be an LDAF-subsemigroup of B. Then D is an

LDAF-right ideal of B if

D(b1 · b2) ≤ D(b1)

for all b1, b2 ∈ B.

Definition 7. Let (B, ·) be a semigroup and D be an LDAF-subsemigroup B. Then D is an

LDAF-left ideal of B if

D(b1 · b2) ≤ D(b2)

for all b1, b2 ∈ B.

Definition 8. Let (B, ·) be a semigroup and D be an LDAF-subsemigroup of B. Then D is an

LDAF-ideal of B if

D(b1 · b2) ≤ D(b1) ∧ D(b2)

for all b1, b2 ∈ B, i.e. D is an LDAF-left ideal and an LDAF-right ideal of B.

Definition 9. Let (B, ·) be a semigroup and D be an LDAF-subsemigroup of B. Then D is an

LDAF-bi-ideal of B if

D(α · b · β) ≤ D(α) ∨ D(β)

for all α, b, β ∈ B.
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Proposition 1. Let (B, ·) be a semigroup and D be an LDAF-subsemigroup of B. If D is an

LDAF-left ideal (right ideal) of B then D is an LDAF-bi-ideal of B.

Proof. Let D be an LDAF-left ideal of B and α, x, β ∈ B. Since D is an LDAF-subsemigroup of

B, it follows that D(α · x · β) ≤ D(α) ∨ D(x · β). Having D an LDAF-left ideal of B implies that

D(x · β) ≤ D(β) and hence D(α · x · β) ≤ D(α) ∨ D(β). Therefore, D is an LDAF-bi-ideal of B.

The case D is an LDAF-right ideal of B is done similarly.

Example 1. Let (P, ·) be the semigroup of positive integers under the standard multiplication

of integers and D be the LDFS of P defined by

D(x) =

{

(< 0.5, 0.4 >,< 0.3, 0.6 >), if 7|x;

(< 1, 0.1 >,< 0.8, 0.1 >), otherwise.

Then D is an LDAF-ideal of P.

We present an example on an LDAF-bi-ideal that is neither an LDAF-right ideal nor an

LDAF-left ideal.

Example 2. Let Bd = {d1, d2, d3, d4} and define “·d” on Bd by Table 1.

·d d1 d2 d3 d4

d1 d1 d2 d1 d2

d2 d1 d2 d1 d2

d3 d3 d4 d3 d4

d4 d3 d4 d3 d4

Table 1. The semigroup (Bd, ·d)

One can easily see that (Bd, ·d) is a semigroup. Let D be the LDFS of Bd defined as follows:

D(d1) = (< 0.8, 0.3 >,< 0.4, 0.5 >),

D(d2) = (< 0.85, 0.3 >,< 0.4, 0.5 >),

D(d3) = D(d4) = (< 0.9, 0.3 >,< 0.4, 0.5 >).

One can easily see that D is an LDAF-subsemigroup of Bd. But it is not an LDAF-left ideal

of Bd since D(d4) = D(d3 · d2) � D(d2). Also, D is not an LDAF-right ideal of Bd since

D(d2) = D(d1 · d2) � D(d1).

However, D is an LDAF-bi-ideal of Bd. Let α, x, γ ∈ Bd.

1. If α ∈ {d3, d4} or γ ∈ {d3, d4}, then D(α · x · γ) ≤ D(α) ∨ D(γ) for all x ∈ Bd.

2. If α, γ ∈ {d1, d2}, then D(α · x · γ) ≤ D(α) ∨ D(γ) for all x ∈ Bd. The latter follows from

considering the following cases.
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Case 1. If α = γ = d1, then D(d1 · x · d1) = d(d1) ≤ D(α) ∨ D(γ).

Case 2. If α = γ = d2, then D(d2 · x · d2) = D(d2) ≤ D(α) ∨ D(γ).

Case 3. If α = d1 and γ = d2, then D(d1 · x · d2) = D(d2) ≤ D(α) ∨ D(γ).

Case 4. If α = d2 and γ = d1, then D(d2 · x · d1) = D(d1) ≤ D(α) ∨ D(γ).

Now, we present an example on an LDAF-right ideal that is not an LDAF-left ideal.

Example 3. Let (Bd, ·d) be the semigroup in Example 2 and define D′ on Bd as follows:

D′(d1) = D′(d2) = (< 0.87, 0.8 >,< 0.3, 0.6 >),

D′(d3) = D′(d4) = (< 0.91, 0.2 >,< 0.3, 0.6 >).

We get that D′ is an LDAF right-ideal that is not an LDAF-left ideal since

D′(d4) = D′(d3 · d2) � D′(d2).

Proposition 2. Let (K, ·) be a semigroup and D∗, D∗∗ be LDAF-subsemigroups of K. Then

D∗ ∪ D∗∗ is an LDAF-subsemigroup of K.

Proof. Let x, y ∈ K and D∗ =
{(

x,< U∗(x), V∗(x) >,< α∗(x), β∗(x) >

)

: x ∈ K
}

,

D∗∗ =
{(

x,< U∗∗(x), V∗∗(x) >,< α∗∗(x), β∗∗(x) >

)

: x ∈ K
}

be LDAF-subsemigroups

of K. Let D = D∗ ∪ D∗∗ =
{(

x,< U(x), V(x) >,< α(x), β(x) >
)

: x ∈ K
}

.

We have U∗(x · y) ≤ U∗(x) ∨ U∗(y), V∗(x · y) ≥ V∗(x) ∧ V∗(y), α∗(x · y) ≤ α′(x) ∨ α∗(y),

β∗(x · y) ≥ β∗(x) ∧ β∗(y), U∗∗(x · y) ≤ U∗∗(x) ∨ U∗∗(y), V∗∗(x · y) ≥ V∗∗(x) ∧ V∗∗(y),

α∗∗(x · y) ≤ α∗∗(x) ∨ α∗∗(y) and β∗∗(x · y) ≥ β∗∗(x) ∧ β∗∗(y).

We get U(x · y) = U∗(x · y)∨U∗∗(x · y) ≤ U∗(x)∨U∗(y)∨U∗∗(x)∨U∗∗(y) = U(x)∨U(y),

V(x · y) = V∗(x · y) ∧ V∗∗(x · y) ≥ V∗(x) ∧ V∗∗(y) ∧ V∗∗(x) ∧ V∗∗(y) = V(x) ∧ V(y),

α(x · y) = α∗(x · y) ∨ α∗∗(x · y) ≤ α∗(x) ∨ α∗(y) ∨ α∗∗(x) ∨ α∗∗(y) = α(x) ∨ α(y) and

β(x · y) = β∗(x · y) ∧ β∗∗(x · y) ≥ β∗(x) ∧ β∗∗(y) ∧ β∗∗(x) ∧ β∗∗(y) = β(x) ∧ β(y). The

latter implies that D(x · y) ≤ D(x) ∨ D(y), as desired.

Using a similar proof as that in Proposition 2, we get the following propositions.

Proposition 3. Let (K, ·) be a semigroup and D∗, D∗∗ be LDAF-left ideals of K. Then D∗ ∪ D∗∗

is an LDAF-left ideal of K.

Proposition 4. Let (K, ·) be a semigroup and D∗, D∗∗ be LDAF-right ideals of K. Then D∗∪ D∗∗

is an LDAF-right ideal of K.

Proposition 5. Let (K, ·) be a semigroup and D∗, D∗∗ be LDAF-ideals of K. Then D∗ ∪ D∗∗ is

an LDAF-ideal of K.

Proposition 6. Let (K, ·) be a semigroup and D∗, D∗∗ be LDAF-bi-ideals of K. Then D∗ ∪ D∗∗

is an LDAF-bi-ideal of K.

Remark 2. Let (K, ·) be a semigroup and D∗, D∗∗ be LDAF-subsemigroups of K. Then D∗∩ D∗∗

is not necessary an LDAF-subsemigroup of K.

We illustrate Remark 2 by Example 4.
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Example 4. Let (P,+) be the semigroup of positive integers under the standard addition of

numbers and D1, D2 be the LDFSs of P defined as follows:

D1(x) =

{

(< 0.34, 0.56 >,< 0.21, 0.67 >), if x ∈ 5P,

(< 0.89, 0.21 >,< 0.65, 0.34 >), otherwise,

D2(x) =

{

(< 0.3, 0.56 >,< 0.21, 0.67 >), if x ∈ 7P,

(< 0.67, 0.1 >,< 0.5, 0.4 >), otherwise.

One can easily see that D1 and D2 are LDAF-subsemigroups of P. Having

(D1 ∩ D2)(5) = (< 0.34, 0.56 >,< 0.21, 0.67 >),

(D1 ∩ D2)(7) = (< 0.3, 0.56 >,< 0.21, 0.67 >),

(D1 ∩ D2)(12) = (< 0.67, 0.21 >,< 0.5, 0.4 >)

and 12 = 5 + 7 implies that (D1 ∩ D2)(12) � (D1 ∩ D2)(5) ∨ (D1 ∩ D2)(7). Thus, D1 ∩ D2 is

not an LDAF-subsemigroup of P.

Definition 10. A semigroup K is an LDAF-duo if every LDAF-left (-right) ideal is an

LDAF-ideal.

Proposition 7. Let K be a commutative semigroup. Then K is an LDAF-duo.

Proof. Let D be an LDAF-left ideal of K and b1, b2 ∈ K. Then D(b1b2) = D(b2b1) ≥ D(b1).

Note, that D is a left ideal of K. Thus, D is a right ideal of K. Therefore, K is an LDAF-duo.

Example 5. Let (Bd, ·d) be the semigroup in Example 2. Then Bd is not an LDAF- duo.

Definition 11. Let (B, ·) be a semigroup and D be an LDFS of B. Let u1, u2, α, β ∈ [0, 1]

satisfy α + β ∈ [0, 1] and αu1 + βu2 ∈ [0, 1]. The ceiling set Dt of B corresponding to

t = (< u1, u2 >,< α, β >) is defined as follows

Dt =
{

b ∈ B : D(b) ≤ t
}

.

Theorem 1. Let u1, u2, α, β ∈ [0, 1] satisfy α + β ∈ [0, 1] and αu1 + βu2 ∈ [0, 1]. Let (K, ·) be a

semigroup and D be an LDFS of K. Then D is an LDAF-subsemigroup of K if and only if for

all t = (< u1, u2 >,< α, β >), Dt 6= ∅ is a subsemigroup of K.

Proof. Let D be an LDAF-subsemigroup of K and Dt 6= ∅. If x1, x2 ∈ Dt, then D(x1), D(x2) ≤ t.

Since D is an LDAF-subsemigroup of K, it follows that D(x1 · x2) ≤ D(x1) ∨ D(x2) ≤ t . This

implies that x1 · x2 ∈ Dt. Thus, Dt is a subsemigroup of K.

Conversely, let x1, x2 ∈ K with D(x1) = t′, D(x2) = t′′ and t = t′ ∨ t′′. Then x1, x2 ∈ Dt.

Since Dt is a subsemigroup of K, so x1 · x2 ∈ Dt. This implies D(x1 · x2) ≤ t = D(x1) ∨ D(x2).

Thus, D is an LDAF-subsemigroup of K.

Theorem 2. Let u1, u2, α, β ∈ [0, 1] satisfy α + β ∈ [0, 1] and αu1 + βu2 ∈ [0, 1]. Let (K, ·) be

a semigroup and D be an LDFS of K. Then D is an LDAF-left ideal of K if and only if for all

t = (< u1, u2 >,< α, β >), Dt 6= ∅ is a left ideal of K.
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Proof. Let D be an LDAF-left ideal of K and Dt 6= ∅. Theorem 1 shows that Dt is a subsemi-

group of K. If x2 ∈ Dt and x1 ∈ K, then D(x1 · x2) ≤ D(x2) ≤ t. The latter implies that

x1 · x2 ∈ Dt and hence, Dt is a left ideal of K.

Conversely, let x1, x2 ∈ K with D(x2) = t′. Then x2 ∈ Dt′ . Since Dt′ is a left ideal of K, it

follows that x1 · x2 ∈ Dt′ . This implies D(x1 · x2) ≤ D(x2).

Theorem 3. Let u1, u2, α, β ∈ [0, 1] satisfy α + β ∈ [0, 1] and αu1 + βu2 ∈ [0, 1]. Let (K, ·) be a

semigroup and D be an LDFS of K. Then D is an LDAF-right ideal of K if for all

t = (< u1, u2 >,< α, β >), Dt 6= ∅ is a right ideal of K.

Proof. The proof is similar to that of Theorem 2.

Theorem 4. Let u1, u2, α, β ∈ [0, 1] satisfy α + β ∈ [0, 1] and αu1 + βu2 ∈ [0, 1]. Let (K, ·) be

a semigroup and D be an LDFS of K. Then D is an LDAF-ideal of K if and only if for all

t = (< u1, u2 >,< α, β >), Dt 6= ∅ is an ideal of K.

Proof. The proof results from Theorems 2 and 3.

Theorem 5. Let u1, u2, α, β ∈ [0, 1] satisfy α + β ∈ [0, 1] and αu1 + βu2 ∈ [0, 1]. Let (K, ·) be

a semigroup and D be an LDFS of K. Then D is an LDAF-bi-ideal of K if and only if for all

t = (< u1, u2 >,< α, β >), Dt 6= ∅ is a bi-ideal of K.

Proof. The proof is similar to that of Theorem 2.

Remark 3. Let u, v, α, β ∈ [0, 1] satisfy α + β ≤ 1 and αu + βv ≤ 1. Let (K, ·) be a semigroup

and D be an LDFS of K defined as D(x) = (< u, v >,< α, β >) for all a ∈ A. Then D is an

LDAF-(left ideal/right ideal/ideal/bi-ideal) of K. This LDFS is called the constant LDFS of K.

Definition 12. Let (K, ·) be a semigroup. Then K is called LDAF-simple if every LDAF-ideal of

K is the constant LDFS.

Theorem 6. Let (K, ·) be a semigroup. Then K is an LDAF-simple if and only if K is a simple

semigroup.

Proof. Let K be an LDAF-simple. Then every LDAF-ideal of K is the constant LDFS. If P is an

ideal of K, then P is the ceiling set of K corresponding to t = (< 0, 1 >,< 0, 1 >) for the

LDAF-ideal D′ of K defined as

D′(x) =

{

(< 0, 1 >,< 0, 1 >), if x ∈ P,

(< 1, 0 >,< 1, 0 >), otherwise.

Since D′ is constant, it follows that P = K and hence, K is simple.

Conversely, let K be a simple semigroup and D be an LDAF-ideal of K. Theorem 4 asserts

that Dt 6= ∅ is an ideal of K for all t = (< u, v >,< α, β >), where u, v, α, β ∈ [0, 1] satisfy

α + β ∈ [0, 1] and αu + βv ∈ [0, 1]. Having K a simple semigroup implies that Dt = K. Let

x, y ∈ P. If D(x) ≤ D(y), then Dt 6= K for t = D(x). Similarly, if D(y) ≤ D(x), then Dr 6= K

for r = D(y). If D(x) � D(y) and D(y) � D(x), then Dp 6= K for p = D(x). This implies that

D is a constant LDFS of K. Therefore, K is LDAF-simple.

Using a similar argument to the proof of Theorem 6, we can prove the following theorem.

Theorem 7. Let (K, ·) be a semigroup. Then K is an LDAF-duo if and only if K is a duo

semigroup.
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3 LDAF-substructures of groups

In this section, we define linear Diophantine anti-fuzzy subgroups of a group and find a

relationship between its LDAF-subgroups and its LDF-subgroups.

Definition 13 ([12]). Let (G, ·) be a group and D be an LDFS of G. Then D is a linear Diophan-

tine fuzzy subgroup (LDF-subgroup) of G if the following conditions hold:

(1) D(α · β) ≥ D(α) ∧ D(β) for all α, β ∈ G,

(2) D
(

α−1
)

= D(α) for all α ∈ G.

Proposition 8 ([12]). Let (G, ·) be a group with identity “e” and D be a linear Diophantine

fuzzy subgroup (LDF-subgroup) of G. Then the following inequalities are true:

(1) D(e) ≥ D(α) for all α ∈ G,

(2) D(αk) ≥ D(α) for all x ∈ G and k ∈ Z.

Proposition 9 ([12]). Let (G, ·) be a group and D be an LDFS of G. Then D is LDF-subgroup

of G if and only if D(g1 · g−1
2 ) ≥ D(g1) ∧ D(g2).

Remark 4. In [9, Theorem 3.5], H. Kamaci stated that the union of LDF-subgroups of a group

is an LDF-subgroup. This result is incorrect. We illustrate it by Example 6.

Example 6. Let (Z,+) be the group of integers under the standard addition of numbers, D3, D4

be the LDFS on Z defined as follows:

D3(x) =

{

(< 0.89, 0.21 >,< 0.65, 0.34 >), if 2|x,

(< 0.34, 0.56 >,< 0.21, 0.67 >), otherwise,

D4(x) =

{

(< 0.67, 0.1 >,< 0.5, 0.4 >), if 3|x,

(< 0.3, 0.56 >,< 0.21, 0.67 >), otherwise.

One can easily see that D3 and D4 are LDF-subgroups of Z.

Having

(D3 ∪ D4)(8) = (< 0.89, 0.21 >,< 0.65, 0.34 >),

(D3 ∪ D4)(27) = (< 0.67, 0.1 >,< 0.5, 0.4 >),

(D3 ∪ D4)(35) = (< 0.34, 0.56 >,< 0.21, 0.67 >),

and 35 = 8 + 27 implies that (D3 ∪ D4)(35) � (D3 ∪ D4)(8) ∧ (D3 ∪ D4)(27). Thus, D3 ∪ D4 is

not an LDF-subgroup of Z.

Definition 14. Let (G, ·) be a group and D be an LDFS of G. Then D is a linear Diophantine

anti-fuzzy subgroup (LDAF-subgroup) of G if the following conditions hold:

(1) D(α · β) ≤ D(α) ∨ D(β) for all α, β ∈ G,

(2) D
(

α−1
)

= D(α) for all α ∈ G.
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Example 7. Let (Z,+) be the group of integers under standard addition and D5 be the LDFS

of Z defined as follows:

D5(α) =

{

(< 0.65, 0.45 >,< 0.3, 0.2 >), if 12|α,

(< 0.75, 0.32 >,< 0.4, 0.2 >), otherwise.

One can easily see that D5 is an LDAF-subgroup of Z.

Theorem 8. Let (G, ·) be a group and D′ be an LDFS of G. Then D′ is an LDF-subgroup of G

if and only if D′c is an LDAF-subgroup of G.

Proof. Let D′ =
{(

a,< U(a), V(a) >,< α(a), β(a) >

)

: a ∈ G
}

be an LDF-subgroup of G.

Then D′c =
{(

a,< V(a), U(a) >,< β(a), α(a) >
)

: a ∈ G
}

.

Now, for all a, b ∈ G, we have D(a · b) ≥ D(a) ∧ D(b). Therefore, U(a · b) ≥ U(a) ∧ U(b),

V(a · b) ≤ V(a) ∨ V(b), α(a · b) ≥ α(a) ∧ α(b) and β(a · b) ≤ β(a) ∨ β(b). The latter implies

that D′c(a · b) ≤ D′c(a) ∨ D′c(a) for all a, b ∈ G. Moreover, having D′
(

x−1
)

= D′(x), we

get U
(

a−1
)

= U(a), V(a−1) = V(a), α
(

a−1
)

= α(a) and β
(

a−1
)

= β(a). This implies that

D′c
(

a−1
)

= D′c(a). Hence, D′c =
{(

a,< V(a), U(a) >,< β(a), α(a) >

)

: a ∈ G
}

is an

LDAF-subgroup of G. The other direction is done similarly.

Corollary 1. Let (G, ·) be a group and D be an LDFS of G. Then D is an LDAF-subgroup of G

if and only if Dc is an LDF-subgroup of G.

Proof. The proof results from Theorem 8 and the fact that (Dc)c = D.

Proposition 10. Let (G, ·) be a group and D∗, D∗∗ be LDAF-subgroups of G. Then D∗ ∪ D∗∗ is

an LDAF-subgroup of G.

Proof. The proof is similar to that of Proposition 2.

Remark 5. The intersection of LDAF-subgroups of a group may not be an LDAF-subgroup.

Proposition 11. Let (G, ◦) be a group and D be an LDAF-subgroup of G. Then the following

statements hold:

(1) D(e) ≤ D(α) for all α ∈ G,

(2) D
(

αk
)

≤ D(α) for all α ∈ G and k ∈ Z.

Proof. Let D =
{(

a,< U(a), V(a) >,< α(a), β(a) >

)

: a ∈ G
}

be an LDAF-subgroup of G.

Then Dc is an LDF-subgroup of G. Therefore, Dc(e) ≥ Dc(α) for all α ∈ G. It follows that

D(e) ≤ D(α) for all α ∈ G. Now, since Dc
(

αk
)

≥ Dc(α) for all α ∈ G and k ∈ Z, therefore

D
(

αk
)

≤ D(α) for all α ∈ G and k ∈ Z.

Using a similar argument to that of Proposition 11, we get the following result.

Proposition 12. Let (G, ·) be a group and D be an LDFS of G. Then D is an LDAF-subgroup

of G if and only if D
(

g1 · g−1
2

)

≤ D
(

g1

)

∨ D
(

g2

)

.

Theorem 9 ([8]). Let (B, .) be a semigroup. Then B is a group if and only if B is simple.
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Corollary 2. Let (B, .) be a semigroup. Then B is a group if and only if B is LDAF-simple.

Proof. Let (B, .) be a semigroup. The proof results from Theorem 6 and Theorem 9.

Corollary 3. Every semigroup has either a non-constant LDAF-left ideal or a non-constant

LDAF- right ideal.

Proof. The proof follows from Corollary 2.

Theorem 10. Let u1, u2, α, β ∈ [0, 1] satisfy α + β ∈ [0, 1] and αu1 + βu2 ∈ [0, 1]. Let (G, ·) be a

group and D be an LDFS of G. Then D is an LDAF-subgroup of G if and only if

Dt 6= ∅ is a subgroup of K for all t = (< u1, u2 >,< α, β >).

Proof. The proof is similar to that of Theorem 1.

Proposition 13. Every non-trivial group has a non-constant LDAF-subgroup.

Proof. Every non-trivial group with identity “e” has {e} as a proper subgroup. One can easily

see that the non-constant LDFS D⊙ of G defined as

D⊙(x) =

{

(< 0, 1 >,< 0, 1 >), if x = e,

(< 1, 0 >,< 1, 0 >), otherwise

is an LDAF-subgroup of G.

Corollary 4. Every non-trivial group has a non-constant LDF-subgroup.

Proof. Proposition 13 asserts that every non-trivial group has a non-constant LDAF-subgroup,

say D. Corollary 1 asserts that Dc is an LDF-subgroup of G. Having D an non-constant LDFS

implies that so Dc.

4 Conclusion

This paper presented a new link between linear Diophantine fuzzy sets and algebraic struc-

tures by introducing LDAF-ideals (bi-ideals) of a semigroup and LDAF-subgroups of a group.

The various properties, definitions, and theorems related to the latter concepts have been dis-

cussed. Moreover, semigroups and groups were characterized by their LDAF-substructures.

The results of the paper can be considered as a generalization of the results known for anti-

fuzzy ideals (bi-ideals) of a semigroup and for anti-fuzzy subgroups of a group. For upcoming

studies this new approach may be applied to numerous algebraic structures using different

methodologies and we hope to apply some applications on the similarity measure like [10,11].

We expect that the proposed model of LDF-relations and all the ideas in this paper will exist

as an establishment for LDFS theory and will lead to new valuable results.
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Аль-Касабех С., Аль Таган М. Характеризацiя напiвгруп за їхнiми лiнiйними дiофантовими анти-

нечiткими бi-iдеалами // Карпатськi матем. публ. — 2024. — Т.16, №1. — C. 103–113.

Метою цiєї роботи є введення лiнiйної дiофантової антинечiткостi алгебраїчних структур.

У зв’язку з цим ми визначаємо лiнiйнi дiофантовi антинечiткi (LDAF) пiдструктури напiвгру-

пи та обговорюємо деякi її властивостi. Крiм того, ми характеризуємо напiвгрупи в термiнах

LDAF-iдеалiв та LDAF-бi-iдеалiв. Насамкiнець, ми застосовуємо лiнiйну дiофантову антинечi-

ткiсть до груп i знаходимо зв’язок мiж LDAF-пiдгрупами групи та її LDF-пiдгрупами.

Ключовi слова i фрази: група, напiвгрупа, лiнiйна дiофантова нечiтка множина, LDAF-пiд-

група, LDAF-пiднапiвгрупа, LDAF-iдеал, LDAF-бi-iдеал.


