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Almost everywhere convergence of two-dimensional
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The present paper the almost everywhere convergence of two-dimensional Walsh-Nörlund

means is studied, when the given function belongs to the hybrid Hardy space H♮. Because the

Nörlund means are a generalization of several known classical summability methods, previously

known classical theorems are derived from the main theorem. In addition some new results follow

in particular cases as well.
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E-mail: ugoginava@uaeu.ac.ae (Goginava U.), nkaroly101@gmail.com (Nagy K.)

1 Walsh functions

We denote the set of non-negative integers by N. By a dyadic interval in I := [0, 1) we mean

one of the form
[
(l − 1)2−k, l2−k

)
for some k ∈ N, 0 < l ≤ 2k. For any given k ∈ N and x ∈ I,

let Ik(x) denote the dyadic interval of length 2−k which contains the point x. The σ-algebra

generated by the dyadic intervals
{

In(x) : x ∈ I
}

will be denoted by An, more precisely, we

have

An = σ
{[

k2−n, (k + 1)2−n
)

: 0 ≤ k < 2n
}

,

where σ(H) denotes the σ-algebra generated by an arbitrary set system H.

We also use the notation In := In (0) , In := I\In, n ∈ N. Let

x =
∞

∑
n=0

xn2−(n+1)

be the dyadic expansion of x ∈ I, where xn = 0 or 1. If x is a dyadic rational number, we

choose the expansion, which terminates in zeros.

For any given n ∈ N it is possible to write n uniquely as

n =
∞

∑
k=0

εk (n) 2k,
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where εk (n) = 0 or 1 for k ∈ N. This expression is called the binary expansion of n and the

numbers εk (n) are called the binary coefficients of n. Let us introduce for 1 ≤ n ∈ N the

notation |n| := max
{

j ∈ N: ε j (n) 6= 0
}

, that is, 2|n| ≤ n < 2|n|+1.

Let us set the nth Walsh-Paley function at the point x ∈ I as

wn (x) = (−1)

∞

∑
j=0

ε j(n)xj

, n ∈ N.

Let us denote the logical addition on I by ∔ . That is, for any x, y ∈ I, we have

x ∔ y :=
∞

∑
n=0

|xn − yn| 2−(n+1).

The nth Walsh-Dirichlet kernel is defined by

Dn (x) =
n−1

∑
k=0

wk (x) .

Recall [10, 13] that

D2n (x) = 2n 1In (x) , (1)

where 1E is the characteristic function of the set E.

The norm of the space L1

(
I2
)
, where I2 := [0, 1)× [0, 1), is defined by

‖ f‖1 :=
∫

I2

∣∣ f (x, y)
∣∣dxdy .

The space weak-L1(I
2) consists of all measurable functions f for which

‖ f‖weak-L1(I2) := sup
λ>0

λµ
(
{| f | > λ}

)
< +∞,

where µ is the Lebesgue measure.

Let f ∈ L1(I
2). The rectangular partial sums of 2-dimensional Fourier series with respect

to the Walsh system are defined by

Sn,m ( f ; x, y) =
n−1

∑
i=0

m−1

∑
j=0

f̂ (i, j) wi(x)wj(y),

where the number

f̂ (i, j) =
∫

I2
f (x, y)wi(x)wj(y)dxdy

is the (i, j)th Walsh-Fourier coefficient.

2 Walsh-Nörlund means

Let {qk : k ≥ 0} be a sequence of non-negative numbers. It is always assumed that q0 > 0

and limn→∞ Qn = ∞. We define the nth Nörlund mean of the Walsh-Fourier series by

t
(q)
n ( f ; x) :=

1

Qn

n

∑
k=1

qn−kSk( f ; x), f ∈ L1(I), (2)
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where Qn := ∑
n−1
k=0 qk, n ≥ 1, and

Sk ( f ; x) :=
k−1

∑
i=0

( ∫

I

f wi

)
wi (x)

is the partial sums of the one-dimensional Walsh-Fourier series. In this case, the summability

method generated by the sequence {qk : k ≥ 0} is regular (see [12]) if and only if

lim
n→∞

qn−1

Qn
= 0. (3)

The Nörlund kernels are defined by

F
(q)
n (t) :=

1

Qn

n

∑
k=1

qn−kDk(t).

The Fejér means and kernels are

σn( f ; x) :=
1

n

n

∑
k=1

Sk( f ; x), Kn(t) :=
1

n

n

∑
k=1

Dk(t), K0 ≡ 0.

It is easily seen that the means tn( f ) and σn( f ) can be got by convolution of f with the kernels

F
(q)
n and Kn. That is,

t
(q)
n ( f ; x) =

∫

I

f (x ∔ t) F
(q)
n (t) dt =

(
f ∗ F

(q)
n

)
(x) ,

σn( f ; x) =
∫

I

f (x ∔ t)Kn(t) dt = ( f ∗ Kn) (x) .

It is well-known that the L1 norms of Fejér kernels are uniformly bounded, that is, there

exists a positive constant c such that

‖Kn‖1 ≤ c for all n ∈ N. (4)

S. Yano [18] estimated the value of c and he gave c = 2. Recently, in paper [15], it was shown

that the exact value of c is 17
15 .

For sequences {qk : k ∈ N} and {pl : l ∈ N} of non-negative numbers the two-dimensional

Nörlund means t
(q,p)
n,m ( f ) are defined as follows

t
(q,p)
n,m ( f ; x, y) :=

1

QnPm

n

∑
k=1

m

∑
l=1

qn−k pm−lSk,l( f ; x, y), p0, q0 > 0,

where Pm := ∑
m−1
k=0 pk.

The two-dimensional kernel function F
(q,p)
n,m (x, y) is the product of one-dimensional kernels

F
(q)
n (x) and F

(p)
m (y) defined by the sequences {qk : k ∈ N} and {pl : l ∈ N}, respectively. That

is,

t
(q,p)
n,m ( f ; x, y) :=

(
f ∗
(

F
(q)
n ⊗ F

(p)
m

))
(x, y) =

∫

I2
f (x ∔ s, y ∔ t) F

(q,p)
n,m (s, t) ds dt,

where ⊗ denotes Kronecker’s product.

The following two theorems were proved in the paper [9] and they have an important role

in proving the main theorems of the presented article.
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Theorem 1. Let n = 2n1 + 2n2 + · · · + 2nr with n1 > n2 > · · · > nr ≥ 0. Let us set n(0) := n

and n(i) := n(i−1) − 2ni for i = 1, . . . , r − 1, and n(r) := 0. Then the following decomposition

F
(q)
n =

wn

Qn

r

∑
j=1

Qn(j−1)w2
nj D2

nj −
wn

Qn

r

∑
j=1

wn(j−1)w2
nj−1

2
nj−1

∑
k=1

qk+n(j)Dk =: Fn,1 + Fn,2 (5)

holds.

Theorem 2. Let {qk : k ∈ N} be a sequence of non-negative numbers. If this sequence is

monotone non-increasing (in sign qk ↓), then

∥∥∥F
(q)
n

∥∥∥
1
∼

1

Qn

|n|

∑
k=1

∣∣εk(n)− εk+1(n)
∣∣Q2k . (6)

Note that the estimation (6) is two-sided, when

sup
n

1

Qn

|n|

∑
k=1

∣∣εk(n)− εk+1(n)
∣∣Q2k = ∞,

otherwise there is only an upper estimation.

Applying Abel’s transformation we have

2
nj−1

∑
k=1

qk+n(j)Dk =
2

nj−2

∑
k=1

(
qk+n(j) − qk+n(j)+1

)
kKk + qn(j−1)−1(2

nj − 1)K2
nj−1

.

Thus, we get

Fn,2 =
wn

Qn

r

∑
j=1

2
nj−2

∑
k=1

wn(j−1)w2
nj−1

(
qk+n(j) − qk+n(j)+1

)
kKk

+
wn

Qn

r

∑
j=1

wn(j−1)w2
nj−1

qn(j−1)−1(2
nj − 1)K

2
nj−1

=: F
(1)
n,2 + F

(2)
n,2 .

(7)

3 Operators of subsequences of Walsh-Nörlund means and H1 space

Let f ∈ L1(I). The dyadic Hardy space H1(I) consists of all functions for which

‖ f‖H1
:=
∥∥∥ sup

n∈N

∣∣S2n( f )
∣∣
∥∥∥

1
< ∞.

A bounded measurable function a is an H1 atom, if either a is constant or there exists a

dyadic interval I, such that

a)
∫

I
a = 0;

b) ‖a‖∞ ≤ µ (I)−1;

c) supp a ⊂ I.
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An operator T is called H1-quasi-local, if there exists a constant c > 0 such that for every

H1-atom a we have

∫

I\I
|Ta| ≤ c < ∞,

where I is the support of the atom. We shall need the following Theorem A [13, p. 263].

An operator T : X → Y is called a σ-sublinear operator, if for any α ∈ C it satisfies

∣∣∣∣T
(

∞

∑
k=1

fk

)∣∣∣∣ ≤
∞

∑
k=1

∣∣T ( fk)
∣∣ and

∣∣T(α f )
∣∣ = |α|

∣∣T( f )
∣∣,

where X is a linear space and Y is a measurable function space.

Theorem A. Suppose that the operator T is σ-sublinear and quasi-local. If T is bounded from

L∞(I) to L∞(I), then

‖T f‖1 ≤ c ‖ f‖H1
, f ∈ H1(I).

Let us define for the positive number K the subset LK({qk}) of natural numbers by

LK({qk}) :=

{
n ∈ N : V(n, {qk}) :=

1

Qn

|n|

∑
k=1

∣∣εk+1 (n)− εk (n)
∣∣Q2k ≤ K

}
.

The following result has been proved in [8].

Theorem 3 ([8]). Let {mA : A ∈ N} be a subsequence which is not a subsequence of LK({qk})

for any K > 0. More precisely,

sup
A∈N

1

QmA

|mA|

∑
k=1

∣∣εk(mA)− εk+1(mA)
∣∣Q2k = ∞ (8)

holds. Then the operator t
(q)
mA

( f ) is not uniformly bounded from H1(I) to L1(I).

It is known [9] that if {qk : k ∈ N} is a non-decreasing sequence, then the maximum

operator t
(q)
∗ := supn∈N

∣∣t(q)n

∣∣ is bounded from the space H1 to the space L1. In general, the

similar statement is invalid when {qk : k ∈ N} is decreasing, and it is dependent on the rate

of decrease. The paper [8] provides a necessary and sufficient condition for the maximum

operator to be bound from the space H1 to the space L1. In particular, this condition reads as

follows

sup
n∈N

(
1

Q2n

n

∑
k=1

Q2k

)
< ∞. (9)

Now, we can formulate the following problem.

Let us say the condition (9) is not fulfilled, also, there exists a subsequence {na : a ∈ N},

such that

sup
a∈N

(
1

Qna

|na|

∑
k=1

∣∣∣εk−1 (na)− εk (na)
∣∣∣Q2k

)
< ∞. (10)

Then is the maximal operator supa∈N

∣∣t(q)na

∣∣ bounded from H1(I) to L1(I)?

In general, the answer to the question is negative. In particular, the following is valid.
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Theorem 4. Let {qk : k ∈ N} be a non-inereasing sequence. Then there exists a subsequence

{na : a ∈ N} for which condition (10) is satisfied and the maximum operator supa∈N

∣∣t(q)na

∣∣ is

not bounded from the space H1(I) to the space L1(I).

Proof. Set fb := D2b+1 − D2b . Then it easy to see that supn

∣∣S2n ( fb)
∣∣ = D2b and consequently,

‖ fb‖H1
=
∥∥∥ sup

n

∣∣S2n( fb)
∣∣
∥∥∥

1
= ‖D2b‖1 = 1.

We can write

t
(q)

2b+2s( fb) =
1

Q2b+2s

2b+2s

∑
v=1

q2b+2s−vSv( fb) =
1

Q2b+2s

2b+2s

∑
v=2b

q2b+2s−vSv (D2b+1 − D2b)

=
1

Q2b+2s

2b+2s

∑
v=2b

q2b+2s−v (Dv − D2b) =
w2b

Q2b+2s

2s

∑
v=1

q2s−vDv, s < b.

Consequently, we have

∥∥∥ sup
0≤s<b

∣∣t(q)
2b+2s( fb)

∣∣
∥∥∥

1
=

∥∥∥∥ sup
0≤s<b

∣∣∣∣
1

Q2b+2s

2s

∑
v=1

q2s−vDv

∣∣∣∣

∥∥∥∥
1

≥
b−1

∑
t=0

∫

It\It+1

sup
0≤s<b

∣∣∣∣
1

Q2b+2s

2s

∑
v=1

q2s−vDv

∣∣∣∣

≥
b−1

∑
t=0

∫

It\It+1

∣∣∣∣
1

Q2b+2t

2t

∑
v=1

q2t−vDv

∣∣∣∣ =
b−1

∑
t=0

1

2t+1

1

Q2b+2t

2t

∑
v=1

q2t−vv

≥ c
b−1

∑
t=0

1

2t+1

1

Q2b

2t

∑
v=2t−1

q2t−vv ≥
c

Q2b

b

∑
t=1

Q2t .

Hence,

sup
b∈N

∥∥∥ sup
0≤s<b

∣∣t(q)
2b+2s( fb)

∣∣
∥∥∥

1
= ∞.

Theorem 4 is proved.

Set t
(q)
# ( f ) := sup

n∈N

∣∣t(q)2n ( f )
∣∣. Now, we prove that the following is valid.

Theorem 5. Let {qk : k ∈ N} be a non-inereasing sequence. The following inequality is true

∥∥t
(q)
# ( f )

∥∥
1
≤ c ‖ f‖H1

, f ∈ H1(I). (11)

Proof. According to Theorem A, it suffices to prove that the sequence of operator t# ( f ) is

H1-quasi-local and bounded from L∞(I) to L∞(I). The boundedness of the operator is proved

in [9]. We suppose that f ∈ H1 (I). Let function a be an H1 atom. Without lost of generality we

can suppose that supp(a) ⊂ IN. Consequently, for any function g which is AN-measurable we

have that
∫

I ag = 0. So, we can assume that n > N and it is enough to prove that the operator

t# ( f ) is H1-quasi local. That is,

sup
n>N

∫

IN

∣∣a ∗ F
(q)
2n

∣∣ ≤ c. (12)
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Let x ∈ IN. Then from (5) we can write
∣∣(a ∗ F

(q)
2n

)
(x)
∣∣ ≤ ‖a‖∞

∫

IN

∣∣F(q)
2n (x ∔ t)

∣∣ dt

≤ 2N
∫

IN

∣∣F2n,1 (x ∔ t)
∣∣ dt + 2N

∫

IN

∣∣F2n,2 (x ∔ t)
∣∣ dt.

(13)

Since F2n,1 = D2n , t ∈ IN and x /∈ IN, we have that x ∔ t /∈ IN and consequently by (1) we get

D2n (x ∔ t) = 0 for n > N, and ∫

IN

∣∣F2n,1 (x ∔ t)
∣∣dt = 0. (14)

Now, we estimate Fn,2 (see (7)). Since the estimation of F
(2)
n,2 is analogous to the estimation of

F
(1)
n,2 it suffices to evaluate one of them. It is proved in [8] that

∫

IN

∣∣F(1)
n,2 (x ∔ t)

∣∣ dt = J1 (n) + J2 (n) + J3 (n) , x ∈ IN , t ∈ IN,

where

J1 (n) ≤
c

2NQn

N

∑
j=1

q2j−1

j

∑
m=1

sup
2m−1≤k<2m

(
k |Kk|

)
,

J2 (n) ≤
c

22N

N

∑
m=1

sup
2m−1≤k<2m

(
k |Kk|

)
,

J3 (n) ≤
c

22N

N−1

∑
s=0

(2sK2s) +
c

2N

N−1

∑
l=0

2l1IN(el)
.

Since (see [13]) ∫

I

sup
2m−1≤k<2m

(
k |Kk|

)
≤ c2m,

we get
∫

IN

sup
n>2N

2N

( ∫

IN

∣∣∣F(1)
n,2 (x ∔ t)

∣∣∣ dt

)
dx ≤

c

Q2N

N

∑
j=1

q2j−1

j

∑
m=1

∫

IN

sup
2m−1≤k<2m

(
k
∣∣Kk (x)

∣∣
)

dx

+
c

2N

N

∑
m=1

∫

IN

sup
2m−1≤k<2m

(
k
∣∣Kk (x)

∣∣
)

dx

+
c

2N

N−1

∑
s=0

∫

IN

(2sK2s (x)) dx

+
c

2N

N−1

∑
l=0

2l
∫

IN

1IN(el)
(x) dx

≤
c

Q2N

N

∑
j=1

q2j−12j + c.

Since
N

∑
j=2

q2j−12j ≤ 4
N

∑
j=2

2j−1−1

∑
l=2j−2

ql = 4
2N−1−1

∑
j=1

qj ≤ 4Q2N ,

we have ∫

IN

sup
n>N

2N

(∫

IN

∣∣∣F(1)
n,2 (x ∔ t)

∣∣∣ dt

)
dx ≤ c < ∞. (15)

Combining (13), (14) and (15) we complete the proof of Theorem 5.
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4 Unrestricted convergence of two-dimensional Walsh-Nörlund means

Let f ∈ L1(I
2). The hybrid maximal function is introduced by

f ♮(x, y) := sup
n∈N

1∣∣In(x)
∣∣

∣∣∣∣
∫

In(x)
f (t, y)dt

∣∣∣∣ .

Define the space H♮(I
2) of Hardy type as the set of functions f such that ‖ f‖H# :=

∥∥ f ♮
∥∥

1
< ∞.

The positive logarithm function log+ is defined by

log+(x) :=

{
log(x), if x > 1,

0, otherwise.

We say that the function f ∈ L1(I
2) belongs to the logarithmic space L ln L(I2) if the

integral ∫

I2

∣∣∣ f | log+ | f
∣∣∣

is finite. Recall that L ln L(I2) ⊂ H♮(I
2). Moreover, f ∈ L ln L(I2) if and only if | f | ∈ H1

♮ (I
2).

In 1992, F. Móricz, F. Schipp and W.R. Wade proved that the Fejér means

1

nm

n

∑
i=1

m

∑
j=1

Si,j ( f )

of two-dimensional Walsh-Fourier series converge to f almost everywhere in Pringsheim sense

(that is, with no restrictions on the indices other than min{n, m} → ∞) for all functions

f ∈ L ln L(I2) [11]. Later, G. Gát [2] proved that the theorem of F. Móricz, F. Schipp and

W.R. Wade can not be sharpened.

Hardy spaces were used by F. Weisz [16, 17] to study the almost everywhere summability

of Walsh-Fourier series. In particular, it follows from theorem of F. Weisz that if f ∈ H♮(I
2),

then

lim
min{n,m}→∞

1

Aα
n−1A

β
m−1

n

∑
i=1

m

∑
j=1

Aα−1
n−i A

β−1
m−jSij ( f ; x, y) = f (x, y) (16)

for a.e. (x, y) ∈ I
2, α, β > 0.

The following theorem was proved by F. Móricz, F. Schipp and W.R. Wade [11] (see also [14]),

which allows us to apply the one-dimensional case result for the two-dimensional case. In par-

ticular, the following has been proved.

Theorem 6 ([11]). Let
{

Vi
n : n ∈ N

}
, i = 0, 1, be the sequence of L1(I) functions. Define one-

dimensional operators Ti f := sup
m∈N

∣∣ f ∗ Vi
m

∣∣, T̃i f := sup
m∈N

∣∣ f ∗
∣∣Vi

m

∣∣∣∣ for f ∈ L1 (I), i = 0, 1, and

suppose that there exist absolute constants c0, c1, such that

µ
({

T̃0 f > λ
})

≤
c0

λ
‖ f‖1 and

∥∥T1 f
∥∥

1
≤ c1 ‖ f‖H1

for f ∈ L1 (I) and λ > 0.

If T f := sup(n,m)∈N2

∣∣ f ∗
(
V0

n ⊗ V1
m

)∣∣, then

µ
(
{T f > λ}

)
≤

c0c1

λ
‖ f‖H♮

, f ∈ H♮(I
2), λ > 0.
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Let us set

t̃
(q)
mA

( f ) := f ∗
∣∣∣F(q)

mA

∣∣∣ .

The next theorem was proved in paper [9].

Theorem 7. Let {mA : A ∈ P} be a strictly monotone increasing sequence. Let {qk : k ∈ N}

be a monotone non-increasing sequence of non-negative numbers (in sign qk ↓). If

{mA : A ∈ N} ∈ LK({qk}) (17)

for some K > 0, then there exists a positive constant c such that

sup
λ>0

λµ

({
sup

A

∣∣∣t̃(q)mA
( f )
∣∣∣ > λ

})
≤ c‖ f‖1 (18)

holds for all f ∈ L1(I) and λ > 0.

By Theorem 6, Theorem 5, Theorem 7 and (9) we have the next theorems.

Theorem 8. Let {pk : k ∈ N}, {qk : k ∈ N} be non-increasing sequences, such that

{nA : A ∈ N} ⊂ LK({qk})

for some K > 0 and

sup
m

(
1

P2m

m

∑
k=1

P2k

)
< ∞.

Then the maximal operator sup
A,m∈N

∣∣∣ f ∗ F
(q)
nA

⊗ F
(p)
m

∣∣∣ is boundend from the space H♮

(
I2
)

to the

space weak-L1(I
2).

Theorem 9. Let {pk : k ∈ N}, {qk : k ∈ N} be non-increasing sequences, such that

{nA : A ∈ N} ⊂ LK({qk})

for some K > 0. Then the maximal operator sup
A,m∈N

∣∣∣ f ∗ F
(q)
nA

⊗ F
(p)
2m

∣∣∣ is boundend from the space

H♮(I
2) to the space weak-L1(I

2).

Theorem 10. Let {qk : k ∈ N} be non-increasing sequence such that {nA : A ∈ N} ⊂ LK({qk})

for some K > 0 and let {pk : k ∈ N} be increasing (positive) sequence. Then the maximal

operator sup
A,m∈N

∣∣∣ f ∗ F
(q)
nA

⊗ F
(p)
m

∣∣∣ is boundend from the space H♮

(
I2
)

to the space weak-L1(I
2).

The usual density argument imply the next corollaries.

Corollary 1. Let the conditions of Theorem 8 be satisfied. Then the two-dimensional Walsh-

Nörlund means tnA,m ( f ) converge to f almost everywhere as min{nA, m} → ∞ for all func-

tions f ∈ H♮(I
2).

Corollary 2. Let the conditions of Theorem 9 be satisfied. Then the two-dimensional Walsh-

Nörlund means tnA,2m ( f ) converge to f almost everywhere as min{nA, 2m} → ∞ for all func-

tions f ∈ H♮(I
2).
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Corollary 3. Let the conditions of Theorem 10 be satisfied. Then the two-dimensional Walsh-

Nörlund means tnA,m ( f ) converge to f almost everywhere as min{nA, m} → ∞ for all func-

tions f ∈ H♮(I
2).

Finally, consider the case when both sequences {pk : k ∈ N} and {qk : k ∈ N} are increas-

ing and positive. In order to consider this case, we need the following lemma.

Lemma 1. Let {ql : l ∈ N} be a monotone non-decreasing sequence of non-negative numbers.

Then for the operator t̃( f ) := sup
n∈N

| f ∗ |Fn|| weak type inequality (18) holds.

Proof. Let the sequence {ql : l ∈ N} be a monotone non-decreasing sequence of non-negative

numbers. Applying Abel’s transformation it is easily seen that

∣∣∣F(q)
n

∣∣∣ ≤
1

Qn

n−1

∑
k=1

(qn−k − qn−k−1) k |Kk|+
q0n

Qn
|Kn| =: F̃

(q)
n .

Since
1

Qn

n−1

∑
k=1

(qn−k − qn−k−1) k +
q0n

Qn
≤ c < ∞,

from (4) we can prove that the operator t̃( f ) is of type (L∞, L∞). Indeed, we can write

∥∥∥ sup
n∈N

∣∣∣ f ∗
∣∣F(q)

n

∣∣
∣∣∣
∥∥∥

∞
≤
∥∥∥ sup

n∈N

∣∣∣| f | ∗ F̃
(q)
n

∣∣∣
∥∥∥

∞
≤ ‖ f‖∞ sup

n∈N

∥∥F̃
(q)
n

∥∥
1
≤ c ‖ f‖∞ .

Now, we prove that the operator sup
n∈N

∣∣∣ f ∗ F̃
(q)
n

∣∣∣ is quasi-local. In particular, let f ∈ L1 (I) such

that supp ( f ) ⊂ IN (u′),
∫

IN(u′) f = 0 for some dyadic interval IN (u′). Then we have

∫

IN(u′)
sup
n∈N

∣∣∣ f ∗ F̃
(q)
n

∣∣∣ ≤ c ‖ f‖1 .

By the shift invariancy of the measure it can be supposed that u′ = 0. If n ≤ 2N , then

f ∗ F̃
(q)
n = 0.

Consequently, n > 2N can be supposed. Then we have

f ∗ F̃
(q)
n =

1

Qn

(
n−1

∑
k=2N+1

(qn−k − qn−k−1) k
(

f ∗ |Kk|
)
+ q0n

(
f ∗ |Kn|

))
.

Hence,

∫

IN

sup
n>2N

∣∣∣ f ∗ F̃
(q)
n

∣∣∣ ≤ sup
n∈N

1

Qn

n−1

∑
k=1

(qn−k − qn−k−1) k
∫

IN

(
sup
k>2N

∫

IN

∣∣ f (u)
∣∣∣∣Kk (x ∔ u)

∣∣du

)
dx

+
∫

IN

(
sup
n>2N

q0n

Qn

∫

IN

∣∣ f (u)
∣∣∣∣Kn (x ∔ u)

∣∣du

)
dx

≤ c
∫

IN

∣∣ f (u)
∣∣
(∫

IN

sup
k>2N

∣∣Kk (x ∔ u)
∣∣dx

)
du.
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Since ∫

IN

sup
n≥2N

|Kn| < ∞, (19)

we have ∫

IN

sup
n>2N

∣∣∣ f ∗ F̃
(q)
n

∣∣∣ ≤ c ‖ f‖1 .

Since the sublinear operator is quasi-local and of type (L∞, L∞), then by standard argument

(see, e.g., [13, p. 263]) it follows that the operator t̃ ( f ) is of weak type (1,1).

From Theorem 6 and Lemma 1 we get the validity of the following assertion.

Theorem 11. Let {qk : k ∈ N} and {pl : l ∈ N} be monotone non-decreasing sequences of

non-negative numbers. Then there exists a positive constant c such that
∣∣∣∣
{

sup
n,m

∣∣tn,m( f )
∣∣ > λ

}∣∣∣∣ ≤
c

λ
‖ f ♮‖1

holds for all f ∈ H1
♮ (I

2).

Corollary 4. Let the conditions of Theorem 11 be satisfied. Then the two-dimensional Walsh-

Nörlund means tn,m ( f ) converge to f almost everywhere as min{n, m} → ∞ for all functions

f ∈ H♮(I
2).

G. Gát and G. Karagulyan [4] recently established that L ln L(I2) space is a maximum Orlicz

space, in which a sequence of operators tn,m ( f ) can be convergent almost everywhere to f as

min{n, m} → ∞. On the other hand, the problems of almost everywhere convergence of

double Walsh-Fourier series along subsequences were studied in the papers [1, 5, 6].

5 Applications to various summability methods

Example 1. Let

pj :=

{
1, if j = 0,

0, if j > 0,

and

qj = Aα−1
j , α ∈ (0, 1) , j ∈ N.

Then

tn,m( f ; x, y) :=
1

QnPm

n

∑
k=1

m

∑
l=1

qn−k pm−lSk,l( f ; x, y) =
1

Aα
n−1

n

∑
k=1

Aα−1
n−kSk,m( f ; x, y).

Since the sequences
{

qj : j ∈ N
}

and
{

pj : j ∈ N
}

are non-increasing and
{

qj : j ∈ N
}

satisfies

condition (9), we get

lim
n→∞

LM({pk})∋m→∞

1

Aα
n−1

n

∑
k=1

Aα−1
n−kSk,m( f ; x, y) = f (x, y) for a.e. x, y ∈ I, f ∈ H♮(I

2).

Example 2. Let qj := Aα−1
j , pj := A

β−1
j , α, β ∈ (0, 1). Then from Corollary 1 we obtain

lim
min{n,m}→∞

1

Aα
n−1 A

β
m−1

n

∑
k=1

m

∑
l=1

Aα−1
n−k A

β−1
m−lSk,l( f ; x, y) = f (x, y) for a.e. x, y ∈ I, f ∈ H♮(I

2).
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Example 3. Let qj := jα−1, pj := jβ−1, α, β ≥ 0. First, we consider the case when α = β = 0.

Then the Nörlund means coincide with the Nörlund logarithmic means

tn,m( f ; x, y) :=
1

QnPm

n−1

∑
k=1

m−1

∑
l=1

Sk,l( f ; x, y)

(n − k) (m − l)
.

From Corollary 2 we have

lim
m→∞

LK({qk})∋n→∞

1

m log n

n−1

∑
k=1

2m−1

∑
l=1

Sk,l( f ; x, y)

(n − k) (2m − l)
= f (x, y) for a. e. x, y ∈ I, f ∈ H♮

(
I

2
)

. (20)

We note that for the subsequence t2n,2m( f ), the Nörlund logarithmic means a.e. convergence

and divergence were studied by G. Gát and the first author in the paper [3]. In particular, the

following was proved.

Theorem GG. Let f ∈ H♮
(
I

2
)

. Then

t2n,2m ( f ; x, y) → f (x, y) a.e. as min (n, m) → ∞.

We also have proved that Theorem GG can not be sharpened. We note that, equality (20) in

the one-dimensional case was proved by the first author in [7].

Now, we consider the case when α = 0 and β > 0. Then from Corollary 2 we get

lim
m→∞

LK({1/k})∋n→∞

1

mβ log n

n−1

∑
k=1

m−1

∑
l=1

Sk,l( f ; x, y)

(n − k) (m − l)1−β
= f (x, y) for a.e. x, y ∈ I, f ∈ H♮(I

2).

Finally, we consider the case when α, β > 0 and from Corollary 2 we get

lim
n→∞
m→∞

1

nαmβ

n−1

∑
k=1

m−1

∑
l=1

Sk,l( f ; x, y)

(n − k)1−α (m − l)1−β
= f (x, y) for a.e. x, y ∈ I, f ∈ H♮(I

2).
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Ґоґiнава У., Надь К. Збiжнiсть майже скрiзь двовимiрних середнiх Уолша-Нерлунда // Карпатськi

матем. публ. — 2024. — Т.16, №1. — C. 290–302.

У цiй статтi дослiджено збiжнiсть майже скрiзь двовимiрних середнiх Уолша-Нерлунда,

коли задана функцiя належить гiбридному простору Хардi H♮. Оскiльки середнi Нерлунда
є узагальненням кiлькох вiдомих класичних методiв пiдсумовування, ранiше вiдомi класичнi

теореми ми виводимо з основної теореми. Крiм того, в окремих випадках отримано деякi новi

результати.

Ключовi слова i фрази: система Уолша, середня Нерлунда, простiр Хардi, нерiвнiсть слабко-

го типу, збiжнiсть майже скрiзь.


