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Convergence and simulation of centred kernel quadratic
stochastic operators
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In this work, we consider a class of centred kernel quadratic stochastic operators. We prove that

in this class a centred kernel quadratic stochastic operator convergences almost surely and in L2 with

an exponential L2-rate to its limit distribution. We propose an approximation scheme for this class

of quadratic stochastic operators and describe three algorithms for simulating them. We consider in

detail an example where the kernel is a Guassian one.

Key words and phrases: asymptotic stability, mixing nonlinear Markov process, nonhomogeneous

Markov operator, quadratic stochastic operator, simulation.
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Introduction

The theory of quadratic stochastic operators has its origins in the work of S.N. Bernstein [6].

Such operators were introduced to describe the evolution of a discrete probability distribution

of a finite number of biotypes in a process of inheritance. Since then the theory has developed

in many different directions. A comprehensive overview of results and open problems in this

domain can be found in [9, 10].

Quadratic stochastic operators may be considered as a first step in the generalization of

(classical) linear Markov chains. In comparison to linear operators, the long-term behaviour

of the iterates of the nonlinear ones, is not well understood. Many works were devoted to the

study of asymptotic behaviour of quadratic operators (see, e.g., [1, 2, 12, 14]). In [2], weak sta-

bility of the so-called centred quadratic stochastic operators was considered. Some exemplary

sufficient conditions for the existence of a weak limit were given. In this work, we comple-

ment [2] with a study of a subclass of centred kernel quadratic stochastic operator, where we

have above the weak convergence (we refer the reader to e.g. [7] for background on weak con-

vergence), almost sure (a.s.) and L2 convergence to its limit distribution. Furthermore, we

are able to make precise statements about the rate of convergence. Finally, we provide three

algorithms for simulating the behaviour of its iterates.

УДК 519.2
2020 Mathematics Subject Classification: 47A35, 47B65, 68U20, 92D15.

The first named author’s research is supported by the Swedish Research Council (Vetenskapsrådet) grant
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1 Basics on quadratic stochastic operators

Given a separable metric space (X,A), where A stands for the Borel σ-field, let

M = M
(

X,A, ‖ · ‖TV

)

denote the Banach lattice of all signed measures on X with finite

total variation, where the norm is given by

‖F‖TV := sup

{

∣

∣

∣

∫

X
f (x)dF(x)

∣

∣

∣
: f is A-measurable, sup

x∈X

∣

∣ f (x)
∣

∣ ≤ 1

}

.

By P := P(X,A), we denote the convex set of all probability measures on (X,A).

Definition 1. A bilinear symmetric operator Q : M×M → M is called a quadratic stochastic

operator on M (QSO on M for short) if for all F1, F2 ∈ M, F1, F2 ≥ 0, and any A ∈ A we have

Q(F1, F2)(A) ≥ 0 and
∥

∥Q(F1, F2)
∥

∥

TV
= ‖F1‖TV‖F2‖TV .

The QSO Q on M is called a kernel quadratic stochastic operator if there exists an

A⊗A-measurable doubly-indexed family G =
{

G(·; x, y) : (x, y) ∈ X2
}

⊂ M of probability

measures on (X,A) such that for F1, F2 ∈ M, G ∈ G we have

Q(F1, F2)(A) =
∫

X×X
G(A; x, y)dF1 × F2(x, y) for all A ∈ A.

The family G is called the kernel of Q.

Clearly any QSO Q is bounded, as
∥

∥Q(F1, F2)
∥

∥

TV
≤ ‖F1‖TV‖F2‖TV for all F1, F2 ∈ M.

Moreover, Q(P × P) ⊆ P . Let M0 = M(µ) be the Banach sublattice of M of all finite Borel

measures on (X,A), absolutely continuous with respect to a fixed positive σ-finite measure µ,

and let P0 be the set of probability measures in M0, i.e. P0 = P ∩M0. Hence M0 = L1(µ)

and P0 is the convex set of all probability densities with respect to µ. We notice that if Q is a

kernel QSO with G(·; x, y) ≪ µ for all x, y ∈ X, then Q(P × P) ⊆ P0.

QSOs play an important role in evolutionary biology. Roughly speaking, the set X is un-

derstood as the space of random values of traits in a population and elements of P repre-

sent the admitted single generation probability distribution of the trait. The model of her-

itability is constructed with the use of QSOs in the following way. If F1, F2 ∈ P describe

the trait distributions in two different populations, then Q(F1, F2) ∈ P describes the distri-

bution of this trait in the next generation coming from the mating of independent individu-

als, one from each of the two populations. Special attention is paid to a nonlinear mapping

P ∋ F 7→ Q(F) := Q(F, F) ∈ P . Here Q(F) represents the probability distribution of the

offspring’s trait, when F is the law of the parents. In this simplified model the iterates Qn(F),

where n = 0, 1, 2, . . ., represent the evolution of the probability distribution of the X-valued

trait of an inbreeding or hermaphroditic population with F as the initial distribution. The

reader is referred to [2] for a detailed explanation of the model.

The long-term behaviour of QSOs has become a subject of study. Different types of strong

asymptotic stability of kernel QSOs were introduced and intensively examined in [5] on ℓ1

space and then extended to the M0 space in [4]. In [2], special attention was paid to weak

convergence of QSOs.

Definition 2 ([2]). Given a complete separable metric space (X,A), where A stands for a Borel

σ-field, let M denote the Banach lattice of all finite Borel measures on (X,A) and let P be

the convex set of all probability measures on (X,A). A QSO Q on M is said to be weakly

asymptotically stable at F ∈ P if the weak limit of the sequence of values of the iterations of the

diagonalized operators Q at F exists in P (we use the notation w- limn→∞ Qn(F) ∈ P ).
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2 Centred kernel quadratic stochastic operators

For further analysis, we restrict our attention to a subclass of the so-called centred QSOs.

Let X = R. Consider the Banach lattice M := M
(

R,B(R)
)

of all Borel measures on R with

finite total variation and denote by P the convex set of all probability measures on
(

R,B(R)
)

.

Definition 3 ([2]). Let G ∈ P . A kernel quadratic stochastic operator QG with the kernel

GG =

{

G(·; x, y) = G

(

· − x + y

2

)

: (x, y) ∈ R × R

}

is called a centred kernel quadratic stochastic operator (CKQSO for short) with perturbation G.

For the convenience of the reader in what follows we recall some useful results from [2],

which are fundamental for our further considerations. This brief introduction also serves to

fix notation. First, we give the formula for the density function of the CKQSO.

Corollary 1 ([2]). Let F1, F2 ∈ P and let G ∈ GG. If F1, F2 and G are all absolutely con-

tinuous with respect to the Lebesgue measure λ, then their densities are f1 := dF1
dλ , f2 := dF2

dλ ,

g := dG
dλ ∈ L1 and we can write the density associated with the CKQSO QG as

d

dλ
QG(F1, F2)(z) =

∫

Rd

∫

Rd
f1(x) f2(y)g

(

z − x + y

2

)

dxdy, z ∈ R. (1)

The density (1) corresponds (see [2, Proposition 1]) to a random variable that can be repre-

sented as

Z =
X1 + X2

2
+ Y,

where X1 ∼ F1, X2 ∼ F2 and Y ∼ G (simplifying notation, by G, we mean the “canonic” dis-

tribution G(·, 0, 0) ∈ GG). As mentioned before, we pay special attention to the corresponding

nonlinear mapping

M ∋ F 7→ QG(F) := QG(F, F) ∈ M.

Once again we emphasize the meaning of QG in modelling the heritability of traits of an in-

breeding or hermaphroditic population. The formula (1) justifies the interpretation, that QG

describes the probability distribution of the offspring’s trait that is equal to the additively ran-

domly perturbed arithmetic mean of the parents’ traits, when the mating individuals are cho-

sen independently. We hence focus on the iterates Qn
G, where n = 0, 1, 2, . . ., which represent

the discrete time evolution of probability distributions of the trait.

Let F ∈ P , G ∈ GG. Denote H
n

:= Qn
G(F). We are interested in the asymptotic stability of

the CKQSO QG at F. We write H
∞

:= w- limn→∞ H
n

, whenever the weak limit of H
n

exists

in P . We also use
a.s.−−−→

n→∞
and

L2

−−−→
n→∞

to indicate a.s. and L2 convergence, respectively.

Theorem 1 ([2]). Let F ∈ P and G ∈ GG. Let X1, X2, X3, . . . and Y
(0)
1 , Y

(1)
1 , Y

(1)
2 , Y

(2)
1 , . . .,

Y
(2)
4 , . . ., Y

(j)
1 , . . ., Y

(j)

2j , . . . be independent sequences of random variables such that X1, X2,

X3, . . . are independent identically distributed (i.i.d. for short) according to F and Y
(0)
1 , Y

(1)
1 ,

Y
(1)
2 , Y

(2)
1 , . . ., Y

(2)
4 , . . ., Y

(j)
1 , . . ., Y

(j)

2j , . . . are i.i.d. according to G. Then, for every n ∈ N+, we
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have that H
n

:= Qn
G(F) is the probability distribution of the random variable

Z
n

:= X
n
+ Y

n
, (2)

where

X
n

:=
X1 + X2 + . . . + X2n

2n
, Y

n
:=

n−1

∑
j=0

Y
(j)
1 + Y

(j)
2 + . . . + Y

(j)

2j

2j
.

The following theorem gives example sufficient condition for the weak asymptotic stability

of CKQSO.

Theorem 2 (special case of [2, Theorem 3]). Assume that the expected value and variance

associated with F ∈ P are m < ∞ and vF < ∞, respectively, and the expected value and

variance associated with G ∈ GG are 0 and vG < ∞, respectively. Then

H
∞

:= w- lim
n→∞

H
n

.

As mentioned above, the iterates of centred kernel quadratic stochastic operators can be

associated with a random variable that has an explicit representation as a sum of an expo-

nential number of independent random variables. This allows for exact simulation from their

laws, controlled approximate simulation from their and the limit laws and control over rates

of convergence. We focus on the “diagonal” CKQSO, i.e. assuming that F1 = F2 = F. We

further assume that both F and G have finite second moments, with variances vF and vG, re-

spectively (while finite second moments are sufficient for weak convergence to hold, they are

not necessary, an alternative sufficient conditions are considered in [2]). We are interested in

the convergence of the distribution H
n

:= (QG)
n(F) to H

∞
:= w- limn→∞(QG)

n(F). But in

fact, in the following theorem, we strengthen Theorem 2 to a.s. and L2 convergence of random

variables associated with the QSO (QG)
n(F). We will use the notation for functions f , g that

f ∈ Θ(g) if f /g = constant > 0.

Theorem 3. Assume that the expected value and variance associated with F ∈ P are m <

∞ and vF < ∞, respectively, and the expected value and variance associated with G ∈ GG

are 0 and vG < ∞, respectively. Let Z
n ∼ H

n
, be the random variable associated with H

n

from the representation given in Theorem 1. Then, Z
n a.s.,L2

−−−→
n→∞

Z
∞

, where Z
∞ ∼ H

∞
, and the

convergence rate is Θ
(

2−n/2
)

in the L2 metric.

Proof. By the strong law of large numbers we have that

X
n a.s.−−−→

n→∞
m,

where E
[

X
n
]

= m and Var
[

X
n
]

= 2−nvF. For convenience, for j = 0, 1, 2, . . ., we introduce

the sequence of random variables

Uj :=
(

Y
(j)
1 + Y

(j)
2 + . . . + Y

(j)

2j

)

/2j,
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and we have that E
[

Uj

]

= 0, Var
[

Uj

]

= 2−jvG. As both ∑ E
[

Uj

]

and ∑ Var
[

Uj

]

are finite, we

have almost sure convergence (cf. [11, Theorem 2])

n−1

∑
j=0

Uj = Y
n a.s.−−−→

n→∞
Y

∞
:=

∞

∑
j=0

Uj,

with

Var
[

Y
n
]

= vG

n−1

∑
j=0

2−j =
(

2 − 2−(n−1)
)

vG → 2vG.

Hence,

Z
n a.s.−−−→

n→∞
Z

∞
:= m +

∞

∑
j=0

Uj,

and we can represent

Z
∞

= X
n
+ Y

n
+ ǫm

n + ǫU
n ,

where ǫm
n = m − X

n
, and ǫU

n =
∞

∑
j=n

Uj. We look at the L2 metric and, as both ǫm
n and ǫm

n are

mean zero and independent, we have

E

[

∣

∣

∣

∣

Z
∞ − Z

n
∣

∣

∣

∣

2
]

= E

[

∣

∣

∣
ǫm

n + ǫU
n

∣

∣

∣

2
]

= E
[

|ǫm
n |2
]

+ E

[

∣

∣

∣
ǫU

n

∣

∣

∣

2
]

.

Calculating each term separately we have

E

[

∣

∣

∣
ǫU

n

∣

∣

∣

2
]

= Var
[

ǫU
n

]

=
∞

∑
j=n

Var
[

Uj

]

= vG

∞

∑
j=n

2−j = vG2−(n−1)

and

E
[

|ǫm
n |2
]

= vF2−n.

Taken together the L2 distance will be

d2
L2

(

Z
n

, Z
∞
)

= (vF + 2vG)2
−n.

Remark 1. In [2], only weak convergence of measures was considered. Here, we have a sim-

ulation oriented perspective, and hence the pointwise and L2 convergence with rates are of

more interest. However, we can notice that from the proof of Theorem 3 we can immediately

obtain convergence in the Wasserstein-2 distance

d2
W2

(

H
n

, H
∞
)

= inf
∫

γ∈Γ

(

H
n

,H
∞
) |x − y|2dγ(x, y),

where Γ

(

H
n

, H
∞
)

is the set of all couplings between H
n

and H
∞

. We notice that due to

the a.s. convergence the coupling Z
n

and Z
n
+ ǫm

n + ǫU
n will be the optimal one and

d2
W2

(

H
n

, H
∞
)

= E

[

∣

∣

∣

∣

Z
∞ − Z

n
∣

∣

∣

∣

2
]

= (vF + 2vG)2
−n.

Convergence in the Wasserstein-2 distance will imply w- limn→∞ H
n
= H

∞
(cf. [8]).
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Using the notation introduced in the statement and the proof of Theorem 3 we easily get

the following result.

Theorem 4. Let N = N(α, δ) be the required number of iterations so that for any n with

probability α the random variable

W
N

:= m +
N−1

∑
j=0

Uj

deviates from Z
n

and Z
∞

by at most δ. We have the upper bound

N(α, δ) ≤ log

(

4 max(vF, 2vG)

δ2α

)

.

Proof. For a given n, take N < n. Using Chebyshev’s inequality we directly obtain

P
(
∣

∣

∣
X

n − m
∣

∣

∣
> δ/2

)

≤ 4vF

δ2
2−n

<
4vF

δ2
2−N

and

P

(
∣

∣

∣

∣

∣

n−1

∑
j=N

Uj

∣

∣

∣

∣

∣

> δ/2

)

≤ 8vG

2δ2

(

2−N − 2−n
)

<
8vG

2δ2
2−N.

Solving for a given probability α we obtain

N(α, δ) ≤ log

(

4 max{vF, 2vG}
δ2α

)

.

Notice that for the approximation described in Theorem 4 to be valid one needs n to be

large. The “X
N

” component of Z
N

is approximated by the constant m, i.e. the initial popula-

tion is assumed to be constant at its mean.

3 A Gaussian CKQSO example

We will consider here in detail a CKQSO QN with a Gaussian kernel N defined by its

density

dN
dλ

(·; x, y) =
1√
π

exp
(

−
(

· −(x + y)/2
)2
)

, (x, y) ∈ R × R. (3)

The resulting CKQSO QN in its density representation (1) is

d

dλ
QN (F1, F2)(z) =

∫

R

∫

R
f1(x) f2(y)

1√
π

exp
(

−
(

z − (x + y)/2
)2
)

dxdy, z ∈ R, (4)

where F1, F2 ∈ P and f1 := dF1
dλ , f2 := dF2

dλ .
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Theorem 5. For any initial, finite mean and variance F ∈ P , the CKQSO QN of the form (4)

converges to a Gaussian distribution with the same expected value as the one associated with

F and unit variance.

Proof. By Theorem 3 we know that Z
n

converges a.s. and in L2 to Z
∞

. Therefore, conver-

gence of the characteristic functions will suffice for finding H
∞

N . Denote ϕN (s) := e−s2/4 (the

“canonic” distribution in GN ), and then the characteristic function of the limit of the CKQSO

QN with kernel N ∈ P , ϕ
H

∞

N
(s), is

ϕ
H

∞

N
(s) = eims

∞

∏
j=0

(

ϕN
( s

2j

)

)2j

, s ∈ R.

The product form comes from [2, Corollary 1]. The first part of the product, eims comes from

the strong law of large numbers applied to X
n

, and the second, infinite product, is proved

in [2, Theorem 3]. Exploiting that the kernel is normal, i.e. the form of ϕN , we obtain

ϕ
H

∞

N
(s) = eims

∞

∏
j=0

(

ϕN
( s

2j

)

)2j

= eims
∞

∏
j=0

(

e−
1
4 s2/22j

)2j

= eims− 1
2 s2

, s ∈ R,

which is the characteristic function of a normal N (m, 1) random variable.

Corollary 2. If both F1 ∈ P and F2 ∈ P are Gaussian with finite means (m1 and m2, respec-

tively) and variances
(

σ2
1 and σ2

2 , respectively
)

, then QN (F1, F2) will also be Gaussian with

mean value (m1 + m2) /2 and variance
(

σ2
1 /4 + σ2

2 /4 + 1/2
)

. QN is mean preserving. Any

unit variance normal distribution F ∈ P given by

dF

dλ
(x) = f (x) =

1√
2π

exp
(

−(x − µ)2/2
)

, x ∈ R,

is a fixed point distribution of QN .

Proof. The characteristic function of QN (F1, F2), where ϕF2
, ϕF2

stand for the characteristic

functions of F1 and F2, respectively, is (see [2, Proposition 1])

ϕQN (F1,F2)(s) = ϕF1

( s

2

)

ϕF2

( s

2

)

ϕN (s), s ∈ R.

Using that F1, F2 and N are all Gaussian, for s ∈ R we obtain

ϕQN (F1,F2)(s) = eim1s/2−σ2
1 s2/8eim2s/2−σ2

2 s2/8e−s2/4 = ei
(

(m1+m2)/2
)

s−
(

σ2
1 /4+σ2

2 /4+1/2
)

s2/2.

This is the characteristic function of an N ((m1 + m2)/2, (σ2
1 /4 + σ2

2 /4 + 1/2)
)

random vari-

able. One can directly verify that QN is mean retaining. If we take F to be N (m, 1), then from

the above it follows that QN (F) is also N (m, 1). Hence for any m < ∞ we have that N (m, 1) is

a fixed point of QN .

We know from Theorem 3 that, for any initial distribution F, Z
n
N ∼ H

n
N will converge

exponentially fast to the Gaussian limit. As Theorem 3 provides an exact L2 convergence rate,

exploiting the Gaussian form of the kernel will not improve this. However, it will allow for

exact derivations in other metrics — the L1 and Hellinger distances.
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Theorem 6. Assume that F is a normal N (m, vF) distribution. Then in the Hellinger dis-

tance dH we have

dH

(

H
n
N , H

∞

N

)

∼ 1

4
|vF − 1| 2−n

and in the L1 distance

∥

∥

∥

∥

h
n
N − h

∞

N

∥

∥

∥

∥

1

= 2 |vF − 1|
(

Φ(1)− 1

2

)

2−n + Θ
(

2−2n
)

,

where h
n
N , h

∞

N are the densities of the normal distributions, and Φ stands for the standard

normal cumulative distribution function.

Proof. We know that H
n
N is N

(

m, 1 − 1
2n + vF2−n

)

and H
∞

N is N (m, 1). We first consider

the Hellinger distance between the two normal distributions with the same mean (see, e.g.,

[13, p. 46 and 51])

d2
H

(

N (µ, σ2
1 ),N

(

µ, σ2
2

)

)

= 1 −
√

2σ1σ2

σ2
1 + σ2

2

,

and then in our case d2
H

(

H
n
N , H

∞

N

)

becomes

1 −
√

2
√

1− 1
2n +vF2−n

1+1− 1
2n +vF2−n = 1 −

(

22n+2
(

1+(vF−1
)

2−n)

22n+2
(

1+(vF−1)2−(n+1)
)2

)
1
4

= 1 −
(

1 −
(

(vF−1)
2n+1+(vF−1)

)2
)

1
4

and using the Taylor expansion around 1 we further obtain

d2
H

(

H
n
N , H

∞

N

)

∼ 1 − 1 − 1
4

(

1 −
(

(vF−1)
2n+1+(vF−1)

)2
− 1

)

∼ (vF−1)2

16 2−2n,

and hence

dH

(

H
n
N , H

∞

N

)

∼ |vF − 1|
4

2−n.

If we consider now the L1 norm, we first need to find the point t0 > 0 such that

h
n
N (t0) = h

∞

N (t0). Due to symmetricity around m, there will be two such points, and we

take the one greater than m. Without loss of generality we take m = 0, as the mean is just re-

sponsible for the location, and will not affect convergence. Denoting σn =
√

1 + (vF − 1)2−n,

we write

e−t2
0/2 =

1

σn
e−t2

0/(2σ2
n),

then transform

t2
0 =

(

1 − 1

σ2
n

)−1

2 log σn,

and finally obtain

t0 = ±
√

(1 + (vF − 1)−12n) log (1 + (vF − 1)2−n).
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Now, denoting by Φn the cumulative distribution function of H
n
N , plugging in the above value

for t0, and denoting ζn := (vF − 1)−1 log (1 + (vF − 1)2−n), we get
∥

∥

∥

∥

h
n
N − h

∞

N

∥

∥

∥

∥

1

= 2

∣

∣

∣

∣

Φn(t0)−
1

2
− Φ(t0) +

1

2
+ 1 − Φ(t0)− 1 + Φn(t0)

∣

∣

∣

∣

= 4

∣

∣

∣

∣

Φ

(

√

(1 + (vF − 1)−12n) log (1 + (vF − 1)2−n)

(1 + (vF − 1)2−n)

)

− Φ
(

√

(1 + (vF − 1)−12n) log (1 + (vF − 1)2−n)
)

∣

∣

∣

∣

= 4

∣

∣

∣

∣

Φ
(

√

2nζn

)

− Φ

(

√

2n (1 + (vF − 1)2−n) ζn

)
∣

∣

∣

∣

.

The standard normal cumulative distribution function can be Taylor expanded as

Φ(t) =
1

2
+

1√
2π

e−t2/2
∞

∑
j=0

t2j+1

(2j + 1)!!
.

Using this we write that

∥

∥

∥

∥

h
n
N − h

∞

N

∥

∥

∥

∥

1

equals

4√
2π

∣

∣

∣

∣

∣

∣

e−
1
2 2nζn

∞

∑
j=0

(2nζn)
2j+1

2

(2j + 1)!!
− e−

1
2(2n(1+(vF−1)2−n)ζn)

∞

∑
j=0

(2n (1 + (vF − 1)2−n) ζn)
2j+1

2

(2j + 1)!!

∣

∣

∣

∣

∣

∣

=
4√
2π

e−
1
2 2nζn

∣

∣

∣

∣

∣

∞

∑
j=0

1

(2j + 1)!!

(

(2nζn)
2j+1

2 − e−
1
2 (vF−1)ζn

(

2n
(

1 + (vF − 1)2−n
)

ζn

)

2j+1
2

)

∣

∣

∣

∣

∣

.

We notice that

2nζn = 1 − (vF − 1)2−(n+1) + O
(

2−2n
)

= 1 + Θ
(

2−n
)

as by Taylor’s theorem

t log(1 + 1/t) = 1 − 1/(2t) + O
(

t−2
)

, t → ∞,

and also (as for n large enough we have |(vF − 1)2−n| < 1)

ζn = 2−n − (vF − 1)2−2(n+1) + O
(

2−3n
)

.

This allows us to write

∥

∥

∥

∥

h
n
N − h

∞

N

∥

∥

∥

∥

1

as

4√
2π

e−
1
2 (1+Θ(2−n))

∣

∣

∣

∣

∣

∞

∑
j=0

1

(2j + 1)!!

(

(

1 + Θ(2−n)
)

2j+1
2 − e−

1
2 (vF−1)(2−n+Θ(2−2n))(1+ Θ(2−n))

2j+1
2

)

∣

∣

∣

∣

∣

,

which asymptotically behaves as
(

4√
2π

e−
1
2

( ∞

∑
j=0

1

(2j + 1)!!

)

+ Θ(2−n)

)

∣

∣

∣
1 − e−

1
2 (vF−1)(2−n+Θ(2−2n))

∣

∣

∣

=

(

4

(

Φ(1)− 1

2

)

+ Θ
(

2−n
)

)

∣

∣

∣
1 − e−

1
2 (vF−1)(2−n+Θ(2−2n))

∣

∣

∣

=

(

2|vF − 1|
(

Φ(1)− 1

2

))

(

2−n
)

+ Θ
(

2−2n
)

∈ Θ
(

2−n
)

.
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We have obtained an exact constant 2|vF − 1|
(

Φ(1)− 1
2

)

in front of the leading exponential

term of QN ’s convergence in the L1 norm.

Remark 2. A very important case is when the initial population is distributed according

to δx0 . This is actually biologically relevant as very often a new population starts off from a

small number of individuals with very little variability between them. This can be caused

by a mutation in some individuals that makes them distinct from the whole population and

makes them a new species or allows them to fill up a new environmental niche [15]. From

the perspective of Theorem 6 this means setting vF = 0 and gives Z
n
N ∼ N

(

x0, 1 − 1
2n

)

, and

Z
∞

N ∼ N (x0, 1), resulting in

dH

(

H
n
N , H

∞

N

)

∼ 2−(n+2),

and
∥

∥

∥

∥

h
n
N − h

∞

N

∥

∥

∥

∥

1

= 2

(

Φ(1)− 1

2

)

2−n + Θ
(

2−2n
)

.

4 Simulating QSOs

A “diagonal” QSO can be viewed as a model describing the evolution of a hermaphroditic

population. Hence, sampling from the laws described by the QSOs is useful both for illustra-

tive purposes and Monte Carlo analyses of the systems. In principle, one could calculate what

Qn(F) is and sample from the resulting law. Unless there are special cases, where each iterate

of the QSO can be analytically found, one would have to resort to numerical methods. These

are subject to rounding errors, that can accumulate as n increases. Hence, in [3], a “population-

type” approach was proposed, see Algorithm 1 below for any (on L1 × L1 or ℓ1 × ℓ1) kernel

QSO.

Algorithm 1 Simulating Q(g)

Draw N independent individuals according to the law of g and call them P0

for i = 1 to n do

Pi := ∅

for j = 1 to N do

Draw a pair
(

xj, yj

)

of individuals from population Pi−1

Draw an individual zj according to the law of Q
(

δxj, δyj

)

= q
(

xj, yj, ·
)

Pi = Pi ∪ {zj}
end for

end for

return P0, P1, . . . , Pn

In [3], Algorithm 1 was explored for QSOs acting on ℓ1 × ℓ1. An observed problem was

that if there are multiple invariant distributions, then the population started from an invariant

distribution can easily switch (to the proximity) of another one. A particular striking example

in [3] was the identity operator. No matter what the initial value ~x was, each trajectory would

end in a state, where exactly only one coordinate of the Qn(~x) had non-zero probability. Taking

multiple repeats could alleviate the problem, but our point is that looking at a single, even very
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long, trajectory from Algorithm 1 can be misleading of the properties of the QSO, especially

when the aim is to characterize the limit.

Notice that Algorithm 1 only assumes that the QSO is a kernel one. A more effective algo-

rithm can be proposed if more is known about the QSO. In particular, the sum representation

of (2) for a CKQSO allows for direct simulation from its law, by drawing an appropriate (ex-

ponential in terms of n) amount of independent random variables distributed according to the

laws of F and G. We describe this in Algorithm 2.

Algorithm 2 Exact sampling from Qn
G(F)

Draw 2n random values from the law of F and denote this set {X1, . . . , X2n}
X

n
= 1

2n (X1 + . . . + X2n)

for j = 0 to n − 1 do

Draw 2j random values from the law of G and denote this set {Y1, . . . , Y2j}
Uj := 1

2j (Y1 + . . . + Y2j)

end for

return X
n
+

n−1

∑
j=0

Uj

Even though exact, the procedures in Algorithm 2 requires an exponential number of ran-

dom variables, which can be prohibitive. Furthermore, it does not allow for sampling form

the limit Q∞
G (F), as this would require an infinite number of values to be drawn. However,

Theorem 3 assures us of exponential convergence, hence we can hope for reasonable approxi-

mations with only a few iterations. In fact, based on Theorem 4, that explicitly takes advantage

of the a.s. convergence of Z
n

, we can propose Algorithm 3 (we use a marginally better upper

bound for N that can be extracted from the proof of Theorem 4).

Algorithm 3 Approximate drawing from Qn
G(F)

N :=
⌈

log
(

max
{

4vF
δ2α

, 8vG

δ2α+23−nvG

})⌉

for j = 0 to N − 1 do

Draw 2j random values from the law of G and denote this set {Y1, . . . , Y2j}
Uj := 1

2j (Y1 + . . . + Y2j)

end for

return m +
N−1

∑
j=0

Uj

Remark 3. If Algorithm 3 is used with the purpose of sampling a population of K individ-

uals from Qn
G(F)

(

Q∞
G (F)

)

, then it does not suffice to choose a small α independently of K.

This is akin to the multiple testing problem: with K large enough just by chance we will ob-

serve an event of probability α. Therefore one way is a “Bonferroni” correction: if on the

individual level we want an error with probability α, then in Algorithm 3 we need to take α/K

instead of α.
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Figure 1. Simulation using Algorithms 2, 3, and 1 with the CKQSO’s kernel given by (3). Initial

population size N = 1000 (Algorithm 1), and the histograms are for iteration n = 20. Algorithm 3

used δ = 0.01 and α = 0.01, resulting in 16 iterations (or 20 without Bonferroni correction). Initial

populations are drawn from:

in top row: exponential distribution with mean values (left to right): 0.1, 1 and 10;

in middle row: normal distribution with mean value 0;

in bottom row: normal distribution with mean value 1.

In the case of the middle and bottom rows the variances are (left to right): 0.1, 1 (fixed point) and 10.

In Figure 1, we illustrate the behaviour of Algorithms 1, 2, and 3 on the Gaussian CKQSO

of (4). Then, in Table 1, we present the first and second moment of the simulated samples. We

consider both normal and exponential initial distributions, with variances lesser than, equal

and greater than the “stationary” variance 1. We take a sample of 1000 and look at genera-

tion 20 (more will start to be prohibitive for Algorithms 2 and 3). In all cases we can see that

the mean is close to the mean of the initial distribution, and that variance is close to 1. We can

clearly see that Algorithm 1 fares the worst (given the sample size and generation). The sample

density is the furthest away from the exact one, which visually resembles N (0, 1). This is most
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F
Algorithm 2 Algorithm 3 Algorithm 3+B Algorithm 1

m V pKS m V pKS m V pKS m V pKS

Exp(10) 0.09 1.07 0.67 0.11 0.98 0.99 0.08 0.92 0.76 0.19 1.02 0.03

Exp(1) 1 0.96 0.97 1.07 1.05 0.07 1.02 1.05 0.16 1.01 0.98 0.84

Exp(0.1) 9.96 1.07 0.59 10.03 1.02 0.51 9.99 1 0.71 10.41 0.95 0

N (0, 0.1) 0.04 1.04 0.1 0.01 1.01 0.64 0.01 1.03 0.9 0.11 1 0

N (0, 1) −0.03 0.93 0.2 0.02 1.04 0.58 0.02 1.02 0.58 0.15 1.12 0

N (0, 10) −0.01 0.96 0.91 −0.01 0.89 0.7 0.03 0.98 0.41 −0.45 1.04 0

N (1, 0.1) 1.02 0.96 0.82 0.95 0.95 0.11 1 1.04 0.76 1.02 1.02 0.74

N (1, 1) 0.98 0.97 0.62 0.94 1.03 0.01 1.02 0.97 0.53 0.92 1.01 0.01

N (1, 10) 0.97 1.07 0.62 1.03 1.1 0.04 0.99 1.02 0.72 1.02 0.97 0.79

Table 1. Moments of the simulation by Algorithms 1, 2, and 3 with the CKQSO’s kernel given

by (3) at generation n = 20. Algorithm 3+B means that the “Bonferroni” correction was used. The

column m is the sample mean, V is the sample variance, and pKS is the p-value of the KS test. The true

variance at generation n = 20 is approximately 1.

clearly seen in the p-values of the Kolmogorov-Smirnov (KS) test (ks.test() in R) presented

in Table 1. The population’s distribution was compared with N (µ, 1), where µ is the expecta-

tion of the initial distribution F and hence of the distribution at each generation. In most cases,

the sample distribution by Algorithm 1 differs significantly from the asymptotic, unit variance,

Gaussian, distribution. All the runs by the other algorithms have p-values greater than 0.05.

Two simulation runs have a p-value of 0.08, however, with so many independent simulations

this can be explainable just by chance.
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Figure 2. Illustration of accumulating bias in Algorithm 1’s simulation, under the CKQSO with (3)

as its kernel and initial distribution N (0, 1) (fixed point).

Left: sample average as function of the generation.

Centre: p-value of the KS test vs. N (0, 1).

Right: p-value of the KS test vs. N (x, 1), where x is the population average.

Both approximate Algorithms 1 and 3 have their advantages and disadvantages. The main

advantage of the latter is speed (provided the required n does not become prohibitive). One

just has to simulate i.i.d. values from a known distribution G. This is as we approximate

the initial distribution by its mean value, indicating that this will work only when n is large,
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i.e. many iterations have passed and only information on the expectation of the seed remains.

On the other hand, we can control the required n very precisely as we know F and G. In Theo-

rem 4 we used Chebyshev’s inequality. Based on Theorem 3 we can only hope for improvement

in constants for specific pairs of distributions. We also have exponential convergence in distri-

bution (Theorem 3) as iterations of the operator cause an exponential growth of the number

of “independent components” describing the law of Qn
G(F). The leading constants are not

large and the example simulations showed that (in these cases) a small number of generations

suffices for approximations that are not significantly (by the KS test) different from the limit.

Algorithm 1 allows one to simulate a whole population evolving. This is an advantage

if one wants to visualize the evolution. On the other hand, if one is just interested in the

law of Qn
G(F) or Q∞

G (F), then the need to simulate a whole history can be overly lengthy.

This algorithm does not require the drawing of a large number of random variables but has

another problem which we can see in Figure 2, larger and larger deviations from the true

distribution. In a computer simulation we cannot have an infinite population size, only a

finite number of individuals is admissible. This means that after iterations of mixing, more

and more dependencies will be appearing in the population. In fact, we can see in Figure 2

that the sample average resembles a random walk, with larger and larger deviations from the

theoretically true expectation. Already in Table 1 we can see for starting Gaussian populations

with unit variance (that are invariant under our QN ) in the last column that even with 20

generations, the KS test notices significant deviations.

One can actually think that all of the above issues, especially the exponential number of

“independent components”, illustrate or rather characterize the complexity of the structure of

quadratic stochastic operators. Fortunately, one can start quantifying this complexity as we

did with Chebyshev’s bound and our results show rapid convergence for finite variance initial

and kernel distributions. On the other hand we restricted ourselves to a very specific class –

centred kernel quadratic stochastic operators. In the full set of quadratic stochastic operators

we should expect many more interesting dynamics.

Code availability

The GitHub repository https://github.com/krzbar/QSO_CTA contains R scripts,

random seeds and simulation outputs used in this work.
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Бартошек К., Пулка М. Збiжнiсть та моделювання центрованих квадратичних стохастичних

операторiв з ядрами // Карпатськi матем. публ. — 2024. — Т.16, №1. — C. 215–229.

У цiй роботi ми розглядаємо клас центрованих квадратичних стохастичних операторiв з

ядрами. Ми доводимо, що в цьому класi центрований квадратичний стохастичний оператор

з ядром майже напевно збiгається в L2 з експоненцiальною швидкiстю до свого граничного

розподiлу. Ми пропонуємо схему апроксимацiї для цього класу квадратичних стохастичних

операторiв i описуємо три алгоритми для їх моделювання. Розглянуто детально приклад, де

ядро є гуасiвським.

Ключовi слова i фрази: асимптотична стiйкiсть, змiшаний нелiнiйний процес Маркова,

неоднорiдний оператор Маркова, квадратичний стохастичний оператор, моделювання.


