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Generalized selfadjointness of operators generated by Jacobi
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We investigate selfadjointness in sense of Hilbert space rigging and related questions. We proved

that this generalized selfadjointness of some operator, which acts from positive into negative space,

is equivalent to ordinary selfadjointness of some modification of this operator in basic (“zero”)

space.

Also we consider operators generated by classical and generalized Jacobi Hermitian matrices,

their selfadjointness and generalized selfadjointness in sense of weight Hilbert space rigging. Some

sufficient conditions of generalized selfadjointness of these operators are proved. Using obtained

results we explaine possibility of construction of example of gereralized selfadjoint opearator which

is not selfadjoint in classical sence.
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1 Introduction

This article appears from one problem, which was described years ago by Yu.M. Bere-

zansky. Investigating this problem we obtained results which are connected to notion of

Hilbert space rigging. We consider operators acting in this chain and their selfadjointness in

the sense of this construction, which we call generalized selfadjointness. Therefore, the main

goal of this article is to explain more clearly the notion of generalized selfadjointness.

In the Section 2, we consider connection between generalized and ordinary selfadjointness.

There we prove that instead of investigation of generalized selfadjointness of some operator it

is sufficient to investigate ordinary selfadjointness of some new operator, which is a modifica-

tion of given one.

In the Section 3, we consider operators generated by classical Jacobi matrix in space ℓ2 of

squared summable sequences and in weight Hilbert rigging of ℓ2. Here we transfer results of

Section 2 on this partial case. Also we obtain a few interesting results about: sufficient con-

ditions of nonselfadjointness of operator generated by classical Jacobi matrix in ℓ2, sufficient

conditions of generalized selfadjointness of operator generated by classical Jacobi matrix in

weight Hilbert rigging of ℓ2 and connection between generalized and ordinary selfadjointness

of these operators.

The Section 4 is dedicated to an example, which was considered in article [3]. It was the

example of operator which is selfadjoint in ordinary sense but in the same time it is not gener-
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alized selfadjoint. As it was later noticed by Yu. M. Berezanskiy that example was constructed

with a mistake. In this section, we show that such example can not be constructed or, in other

words, such situation is not possible.

In the Section 5, we consider operator generated by generalized Jacobi matrix, i.e. three-

diagonal block Jacobi type matrix. As it provided to be, in this case similar situation to de-

scribed one in Section 3 takes place.

2 Connection between ordinary and generalized selfadjointness

Let us consider complex Hilbert space rigging

H− ⊃ H0 ⊃ H+. (1)

The construction of this space was described in [2]. We will not repeat all the procedure of

construction. But we just admit that H+ is dense in H0 as subspace and ‖u‖H0
≤ ‖u‖H+

,

u ∈ H+.

Let J, J, I be some isometric operators, which are constructed in specific way with respect

to (1). In particular, I ↑ H0 is the adjoint operator to the operator of embedding of H+ → H0.

For these operators following equalities take place:

J : H− → H0, D(J) = H−, R(J) = H0;

J : H0 → H+, D(J) = H0, R(J) = H+;

I : H− → H+, D(I) = H−, R(I) = H+;

I = JJ.

(2)

Let us consider an operator A : H+ → H− with a dense domain D(A).

For A it is easy to define an adjoint operator A+ : H+ → H− [3]. Let ψ ∈ H+ be such that

the functional ϕ → (Aϕ, ψ)H0
∈ C, which is defined on D(A), is continuous and, therefore,

has a representation (Aϕ, ψ)H0
= (ϕ, ψ+)H0

, ψ+ ∈ H−. Then such ψ is an element of the do-

main D(A+) of an operator A+ and A+ψ := ψ+ . If H+ = H0, then this is classical definition

of adjoint operator.

Definition 1. Operator A : H+ → H− is called generalized Hermitian, i.e. Hermitian in sense

of rigging (1), if (Au, v)H0
= (u, Av)H0

, u, v ∈ D(A).

Definition 2. Operator A : H+ → H− is called generalized selfadjoint, i.e. selfadjoint in sense

of rigging (1), if A = A+.

In paper [3] it was proved the following result.

Proposition 1. Operator A : H+ → H− is generalized selfadjoint if and only if the operator

IA : H+ → H+ is selfadjoint, i.e. if IA is selfadjoint in a classical sense as an operator in H+.

But it is more convenient to check a selfadjointness in space H0. So, we prove the following

theorem.
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Theorem 1. Operator A : H+ → H− is generalized selfadjoint if and only if the operator

JAJ : H0 → H0 is selfadjoint.

Proof. Necessity. Let A : H+ → H− be a generalized selfadjoint operator. Let us prove that the

operator JAJ is Hermitian. Since J+ = J (see [2]), we get

(JAJ f , g)H0
= (AJ f , Jg)H0

= (J f , AJg)H0
= (AJg, J f )H0

= (JAJg, f )H0
= ( f , JAJg)H0

, f , g ∈ D(JAJ).

Thus, for selfadjointness of JAJ it is sufficient to show that defect numbers of this operator are

(0, 0), or, what is the same, a defect subspace is equal to {0}.

Since A is generalized selfadjoint operator and Proposition 1 holds true, for any fixed

z ∈ C \ R and for all u ∈ D(A) from
(

(IA − z1)u, v
)

H+
= 0 it follows that v = 0, i.e. de-

fect subspace of IA consist of {0}, where v ∈ H+ and 1 is identity operator.

For some z ∈ C \ R, g ∈ H0 and for all f ∈ D(JAJ) we have

0 =
(

(JAJ − z1) f , g
)

H0
=
(

J−1 J(JAJ − z1) f , J−1 Jg
)

H0

=
(

J(JAJ − z1) f , Jg
)

H+
=
(

(IA − z1)J f , Jg
)

H+
.

Since J f ∈ D(A) and Jg ∈ H+, from above mentioned and the last equality it follows that

Jg = 0. Since operator J is isometric, then g = 0. So, the defect subspace of operator JAJ

consists only of element 0 and, therefore, JAJ is selfadjoint.

Sufficiency. Let JAJ : H0 → H0 is selfadjoint. Let us show that IA : H+ → H+ is selfadjoint.

(IAu, v)H+
=
(

J−1IAu, J−1v
)

H0

=
(

J−1JJAJ J−1u, J−1v
)

H0

=
(

J−1u, JAJ J−1v
)

H0

=
(

J−1u, J−1JJAv
)

H0

= (u, IAv)H+
, u, v ∈ D(A).

Since IA is Hermitian, it is sufficient to show that its defect space is equal to {0}. Let us do it

in the same way as for necessity.

Since JAJ is selfadjoint, from
(

(JAJ − z1) f , g
)

H0
= 0 it follows that g = 0, where

z ∈ C \ R, f ∈ D(JAJ), g ∈ H0. For z ∈ C \ R, u ∈ D(A) and v ∈ H+ the following equality

takes place

0 =
(

(IA − z1)u, v
)

H+
=
(

J−1(IA − z1)u, J−1v
)

H0

=
(

(JAJ − z1)J−1u, J−1v
)

H0

.

Since J−1u ∈ D(JAJ) and J−1v ∈ H0, we have that J−1v = 0. From the equality

0 =
(

J−1v, J−1v
)

H0

= (v, v)H+
= ‖v‖2

H+

it follows that v = 0. Thus, IA : H+ → H+ is selfadjoint. Therefore from Proposition 1 it

follows that the operator A : H+ → H− is generalized selfadjoint.
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3 Ordinary and generalized selfadjointness of operators generated by clas-

sical Jacobi matrix

Let us consider the Hilbert space rigging

ℓ2

(

p−1
)

⊃ ℓ2 ⊃ ℓ2(p), (3)

where ℓ2(p) is the space of complex sequences u = (u0, u1, . . .) with scalar product

(u, v)ℓ2(p) =
∞

∑
n=0

unv̄n pn, u, v ∈ ℓ2(p)

and weight p = (pn)∞
n=0, pn ≥ 1, n ∈ N0 := {0, 1, . . .}. In this case the operator J acts in the

following way

ℓ2 ∋ u 7→ Ju ∈ ℓ2(p) : (Ju)n = p−1/2
n un.

The operator J : ℓ2

(

p−1
)

→ ℓ2 acts in the same way on elements of space ℓ2

(

p−1
)

.

Let us consider classical Hermitian Jacobi matrix of view

A =











b0 c0 0 0 0 . . .

a0 b1 c1 0 0 . . .

0 a1 b2 c2 0 . . .
...

...
...

...
...











, bn ∈ R, an = cn > 0, n ∈ N0. (4)

Consider an operator A′, which acts on finite sequences f ∈ ℓfin as follows

(

A′ f
)

n = (A f )n = an−1 fn−1 + bn fn + an fn+1, f−1 = 0, ∀ n ∈ N0.

Operator A′ : ℓfin → ℓfin is Hermitian. Let us denote by A : ℓ2 → ℓ2 the closure of

operator A′ in ℓ2. Also we can define an operator A : ℓ2(p) → ℓ2

(

p−1
)

as closure of operator

A′ : ℓ2(p) → ℓ2

(

p−1
)

, which we understand as an operator from ℓ2(p) to ℓ2

(

p−1
)

.

In what follows we will investigate generalized selfadjointness of operator A and its con-

nection with selfadjointness of operator A. Since the theory of classical Jacobi matrices is well

known, then at first we will briefly characterize selfadjointness of A : ℓ2 → ℓ2.

Let us consider for some complex number z the following recurrence relation

(

AP(z)
)

n
= an−1Pn−1(z) + bnPn(z) + anPn+1(z) = zPn(z), n ∈ N0,

where P(z) =
(

P0(z), P1(z), . . .
)

is such a sequence of polynomials that P−1(z) = 0, P0(z) = 1.

The following theorem gives necessary and sufficient conditions of selfadjointness of A.

Proposition 2. Operator A : ℓ2 → ℓ2 is selfadjoint if and only if for all z ∈ C \ R the following

equality
∞

∑
n=0

∣

∣Pn(z)
∣

∣

2
= ∞

holds.

In the paper [6] it was formulated a few sufficient conditions of selfadjointness of operator

A (see, also, [1]). We consider some of them.
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Proposition 3. The operator A : ℓ2 → ℓ2 is selfadjoint if any one of the following conditions

holds:

a)
∞

∑
n=0

1
an

= ∞;

b)
∞

∑
n=0

∣

∣

∣

bn+1
anan+1

∣

∣

∣
= ∞;

c) lim inf
n→∞

max {a0, a1, . . . , an−1}n−1 < ∞;

d) an−1 + bn + an ≤ C < ∞ for all n ∈ N0, where C is some constant and a−1 = 0.

In [1], it was proved the following sufficient conditions of nonselfadjointness of an operator

A : ℓ2 → ℓ2.

Proposition 4. Let |bn| ≤ c = const, n ∈ N0. Let the inequality an−1an+1 ≤ a2
n holds, starting

from some n ∈ N0 and let
∞

∑
n=0

1
an

< ∞. Then the operator A : ℓ2 → ℓ2 is not selfadjoint.

Let us prove some generalization of this theorem.

Theorem 2. Let the inequality an−1an+1 ≤ a2
n holds, starting from some n ∈ N0 and let

∞

∑
n=0

1+|bn|
an

< ∞. Then the operator A : ℓ2 → ℓ2 is not selfadjoint.

Proof. From Proposition 4 it follows that it is sufficient to show that A : ℓ2 → ℓ2 is not selfad-

joint if starting from some n we have an−1an+1 ≤ a2
n, |bn| → ∞, n → ∞ and

∞

∑
n=0

|bn|
an

< ∞.

Let n0 ∈ N is such that an−1an+1 ≤ a2
n for all n ≥ n0. The operator A : ℓ2 → ℓ2 is not

selfadjoint if for some z ∈ C \ R we have
∞

∑
n=0

∣

∣Pn(z)
∣

∣

2
< ∞. From the theorem conditions it

follow that it is sufficient to show that
∣

∣Pn(z)
∣

∣ ≤ C√
an

for all n ≥ n1, where n1 ∈ N and C > 0

is some constant.

Let us suppose that for all n such that n1 ≤ n ≤ m the inequality
√

an

∣

∣Pn(z)
∣

∣ ≤ Cm holds,

where Cm > 0 is some sequence of constants and m ≥ max {n0, n1}+ 1 =: m0. Now we will

select Cm+1. Since Pm+1(z) = 1
am
(z − bm)Pm(z) − am−1

am
Pm−1(z), for any fixed z ∈ C \ R the

following inequality

√
am+1

∣

∣Pm+1(z)
∣

∣ ≤
√

am+1

am
|z − bm|

∣

∣Pm(z)
∣

∣+

√
am+1am−1

am

∣

∣Pm−1(z)
∣

∣

≤
(

k + |bm|
)

√
am+1am−1

am

1√
am−1am

√
am

∣

∣Pm(z)
∣

∣

+

√
am+1am−1

am

√
am−1

∣

∣Pm−1(z)
∣

∣

≤ Cm

(

1 +
k + |bm|√

am−1am

)

takes place, where k > 0 is some constant. Consider Cm of view Cm+1 := Cm

(

1 + k+|bm|√
am−1am

)

,

m ∈ N0. Therefore, for all m > m0 we get

Cm = Cm0

m−1

∏
n=m0

(

1 +
k + |bn|√

an−1an

)

≤ Cm0

∞

∏
n=1

(

1 +
k + |bn|√

an−1an

)

=: C.
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Now, we will show that C < ∞, or, in other words, the product is convergent, and this will end

the proof. Indeed, since

|bn|
an−1

=
an

an−1

|bn|
an

≤ an−1

an−2

|bn|
an

≤ . . . ≤ a1

a0

|bn|
an

,

the following inequality

∞

∑
n=1

k + |bn|√
an−1an

≤ 2
∞

∑
n=1

|bn|√
an−1an

≤ 2

(

∞

∑
n=1

|bn|
an−1

∞

∑
n=1

|bn|
an

)1/2

< ∞

holds. Therefore, C < ∞ and the theorem is proved.

Now we will try to explain the situation about generalized selfadjointness of an operator

A : ℓ2(p) → ℓ2

(

p−1
)

. From Theorem 1 it follows that generalized selfadjointness of the oper-

ator A : ℓ2(p) → ℓ2

(

p−1
)

is equivalent to selfadjointness of the operator JAJ : ℓ2 → ℓ2.

Let us consider the operator JAJ. Let f ∈ D(JAJ). Then for all n ∈ N0 we have

(JAJ f )n = (JAJ f )n = p−1/2
n

(

an−1 p−1/2
n−1 fn−1 + bn p−1/2

n fn + an p−1/2
n+1 fn+1

)

= an−1p−1/2
n−1 p−1/2

n fn−1 + bn p−1
n fn + an p−1/2

n p−1/2
n+1 fn+1,

(5)

where f−1 := 0. Let us consider the Jacobi matrix of type (4), namely

Ap =











b0p−1
0 a0 p−1/2

0 p−1/2
1 0 0 0 . . .

a0 p−1/2
0 p−1/2

1 b1p−1
1 a1 p−1/2

1 p−1/2
2 0 0 . . .

0 a1 p−1/2
1 p−1/2

2 b2 p−1
2 a2 p−1/2

2 p−1/2
3 0 . . .

...
...

...
...

...











. (6)

This matrix generates an operator in ℓ2 in the following way. Let A′
p : ℓfin → ℓfin be an operator

in ℓ2, which acts on finite vectors as follows A′
p f = Ap f , f ∈ ℓfin. Let us denote by Ap : ℓ2 → ℓ2

the closure of operator A′
p in ℓ2.

The following results take place.

Theorem 3. Operators JAJ : ℓ2 → ℓ2 and Ap : ℓ2 → ℓ2 are equal.

Proof. From construction of Ap and (5) it follows that operators JAJ and Ap act in the same

way on their domains. So, it is sufficient to show that domains of these operators are equal.

At first, we consider view of these domains. Note that D(JAJ) =
{

f ∈ ℓ2 : J f ∈ D(A)
}

.

From the construction of the operators A and Ap it follows that D(A) = ℓfin ∪ Ω1 and

D(Ap) = ℓfin ∪ Ω2, where

Ω1 :=
{

u ∈ ℓ2(p) \ ℓfin : Au ∈ ℓ2

(

p−1
)}

,

Ω2 := { f ∈ ℓ2 \ ℓfin : Ap f ∈ ℓ2}.

Now, let us show that D(JAJ) = D(Ap).

Let f ∈ D(Ap). If f ∈ ℓfin, then J f ∈ ℓfin. So, f ∈ JAJ. Let f ∈ Ω2. Since f ∈ ℓ2 \ ℓfin,

J f ∈ ℓ2(p) \ ℓfin. Show that AJu ∈ ℓ2

(

p−1
)

.
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We have
∞

∑
n=0

∣

∣(AJ f )n

∣

∣

2
p−1

n =
∞

∑
n=0

∣

∣an−1(J f )n−1 + bn(J f )n + an(J f )n+1

∣

∣

2
p−1

n

=
∞

∑
n=0

∣

∣

∣
an−1p−1/2

n−1 fn−1 + bn p−1/2
n fn + an p−1/2

n+1 fn+1

∣

∣

∣

2
p−1

n

=
∞

∑
n=0

∣

∣(Ap f )n

∣

∣

2
< ∞.

(7)

Therefore f ∈ D(JAJ).

Now, let u ∈ D(JAJ). Let Ju ∈ ℓfin. So, u ∈ ℓfin and, therefore, u ∈ D(Ap). Let Ju ∈ Ω1. So,

Ju ∈ ℓ2(p) \ ℓfin and AJu ∈ ℓ2

(

p−1
)

. Thus, u ∈ ℓ2 \ ℓfin and from (7) it follows that Apu ∈ ℓ2.

Therefore, u ∈ D(Ap).

Theorem 4. For any Jacobi matrix A of view (4) there exists a weight p = (pn)∞
n=0, such that

the operator A : ℓ2(p) → ℓ2

(

p−1
)

is generalized selfadjoint.

Proof. According to Theorem 1 and Theorem 3 it is sufficient to show that the operator

Ap : ℓ2 → ℓ2 is selfadjoint.

Let the weight p = (pn)∞
n=0 is such that pn := an−1 + an + 1. Then for all n ∈ N0 we have

1

an p−1/2
n p−1/2

n+1

=
(an−1 + an + 1)1/2 (an + an+1 + 1)1/2

an
> 1.

So,
∞

∑
n=0

1
an p−1/2

n p−1/2
n+1

= ∞, and therefore, from condition a) of Proposition 3 it follows that

Ap : ℓ2 → ℓ2 is selfadjoint.

Remark 1. From Theorem 4 we can make the following conclusion: in spite of situation with

selfadjointness of operator A : ℓ2 → ℓ2, i.e. either A is selfadjoint or not (see, Proposition

3 and Theorem 2), there exists Hilbert space rigging (3), such that A : ℓ2(p) → ℓ2

(

p−1
)

is

generalized selfadjoint.

Theorem 5. Let A be an arbitrary matrix of the form (4). Then there exists a weight

p = (pn)
∞
n=0, or, in other words, there exists a Hilbert space rigging (3), such that the operator

A : ℓ2(p) → ℓ2

(

p−1
)

is bounded and generalized selfadjoint, and D(A) = ℓ2(p).

Proof. For any f ∈ ℓfin we get
∣

∣(A f )n

∣

∣

2
p−1

n = |an−1 fn−1 + bn pn + an pn+1|2 p−1
n

≤ a2
n−1 p−1

n−1 p−1
n | fn−1|2 pn−1 + b2

n p−2
n | fn|2 pn + a2

n p−1
n p−1

n+1 | fn+1|2 pn+1.
(8)

Let u ∈ ℓ2(p). Then
∞

∑
n=0

|un|2n pn < ∞. Let us consider a weight p = (pn)∞
n=0, such that

pn := an−1 + |bn|+ an + 1, n ∈ N0. Thus, from (8) we obtain

‖Au‖2
ℓ2(p−1) =

∞

∑
n=0

∣

∣(Au)n

∣

∣

2
p−1

n

≤
∞

∑
n=0

a2
n−1 p−1

n−1p−1
n |un−1|2 pn−1 +

∞

∑
n=0

b2
n p−2

n |un|2 pn +
∞

∑
n=0

a2
n p−1

n p−1
n+1|un+1|2 pn+1

≤ 3
∞

∑
n=0

|un|2 pn = 3 ‖u‖2
ℓ2(p) < ∞.



210 Ivasiuk I.Ya.

From this inequality it follows that A : ℓ2(p) → ℓ2

(

p−1
)

is bounded and D(A) = ℓ2(p).

Generalized selfadjointness of the operator A can be proved in the same way as in Theo-

rem 4, because the weight considered in the theorem also satisfies the conditions of previous

theorem.

Theorem 6. The operator A : ℓ2(p) → ℓ2

(

p−1
)

is generalized selfadjoint if any one of condi-

tions a), b) or c) of Proposition 3 holds.

Proof. From Theorems 1 and 3 it follows that an operator A is generalized selfadjoint if and

only if an operator Ap is selfadjoint. We will use this fact in the proof.

So, let a) takes place. Since 1
an p−1/2

n p−1/2
n+1

≥ 1
an

, we get
∞

∑
n=0

1
an p−1/2

n p−1/2
n+1

= ∞. Therefore, from

condition a) of Proposition 3 and above mentioned it follows that A : ℓ2(p) → ℓ2

(

p−1
)

is

generalized selfadjoint.

Let now b) holds true. Since

∞

∑
n=0

∣

∣

∣

∣

∣

bn+1

anan+1

p1/2
n p1/2

n+1p1/2
n+1 p1/2

n+2

pn+1

∣

∣

∣

∣

∣

≥
∞

∑
n=0

∣

∣

∣

∣

bn+1

anan+1

∣

∣

∣

∣

= ∞,

then from condition b) of Proposition 3 it follows that Ap is selfadjoint.

Let c) is fulfilled. Since

max
{

a0 p−1/2
0 p−1/2

1 , a1 p−1/2
1 p−1/2

2 , . . . , an−1p−1/2
n−1 p−1/2

n

}

< max {a0, a1, . . . , an−1},

then from condition c) of Proposition 3 it follows that Ap : ℓ2 → ℓ2 is selfadjoint and, therefore,

A : ℓ2(p) → ℓ2

(

p−1
)

is generalized selfadjoint.

Remark 2. From Theorem 6 it follows that sufficient conditions a) – c) from Proposition 3 of

selfadjointness of an operator A are also sufficient conditions for an operator A generalized

selfadjointness.

4 About one example

In article [3], authors were trying to construct an example of the following type (it was

constructed there but it contains a mistake, which was admitted later by the authors): in some

Hilbert space rigging (1) they were looking for an operator A : H+ → H− with dense domain

D(A) in H+, which action in space H0 is selfadjoint, i.e. A : H0 → H0 is selfadjoint, but the

operator A : H+ → H− is not generalized selfadjoint. Let us show that such an example can

not be constructed.

At first, we consider an example.

Example 1. Let us consider Hilbert space rigging (3) with weight p = (pn)∞
n=0, pn := n + 1,

n ∈ N0. In this chain, let us consider an operator A : ℓ2(p) → ℓ2

(

p−1
)

, constructed from the

matrix (4) by the procedure described in Section 3, namely

an := n + 1, bn := −(n + 1)5/2

(n + 2)3/2
, n ≥ 0.
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Also let us consider a sequence u = (un)∞
n=0, un := (n + 1)−3/2, n ≥ 0, which is the element of

ℓ2(p). The operator A acts on this element in following manner:

(Au)0 = 0;

(Au)n = n · n−3/2 − (n + 1)5/2

(n + 2)3/2
(n + 1)−3/2 + (n + 1)(n + 2)−3/2 = n−1/2, n ≥ 1.

Thus, u ∈ D(A), because

‖Au‖2
ℓ2(p−1) =

∞

∑
n=0

∣

∣(Au)n

∣

∣

2
p−1

n =
∞

∑
n=1

1

n(n + 1)
= 1.

Also, Au does not belong to ℓ2, because ‖Au‖2
ℓ2
=

∞

∑
n=1

1
n = ∞.

From this example the next statement follows.

Proposition 5. Let A : H+ → H− be an operator in some Hilbert space rigging (1) with

domain D(A) dense in H+. The operator A : H+ → H− can not be considered in sense

A : H0 → H0 in general case, i.e. its considering in sense of action in H0 is not correct.

Theorem 7. Let A : H+ → H− be an operator in some Hilbert space rigging (1) with do-

main D(A) dense in H+ and with range of values R(A) belonging to H0. If the operator

A : H0 → H0, i.e. the operator A in sense of action in H0, is selfadjoint, then the operator

A : H+ → H− is generalized selfadjoint.

Proof. Let us denote for clearness operator A : H0 → H0, which we understand as an operator

in H0, by A : H0 → H0. So, A and A are the same operators but we understand them in

different action sense.

Since A is selfadjoint, D(A) = D(A) and they act in the same way on their domains, the

operator A is generalized Hermitian. Therefore, A ⊂ A+.

The definition implies that domain D (A+) of operator A+ consists of such ψ ∈ H+ that

the functional ϕ 7→ (Aϕ, ψ)H0
, ϕ ∈ D(A), is continuous. On the other hand, the domain

D (A∗) of operator A∗ consists of such g ∈ H0 that the functional f 7→ (A f , g)H0
, f ∈ D(A),

is continuous. Since D(A) = D(A) and H0 ⊃ H+, we get D (A∗) ⊃ D (A+). Therefore,

A+ ⊂ A∗ = A = A. So, A is generalized selfadjoint.

So, from Proposition 5 and Theorem 7 it follows that an example described at the beginning

of this section can not be constructed.

Also, it is necessary to admit that earlier we tried to construct such an example in terms of

differentiation operator −i d
dt in weight Hilbert space rigging of L2(R, dx). We could not con-

struct such example at that time (as now we know it can not be constructed), but all obtained

in that process results were published in article [5]. The main result of that paper states that an

operator, which is generated by −i d
dt , is generalized selfadjoint as soon as respective operator

is selfadjoint. Thus, the article [5] corroborate obtained result.
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5 Ordinary and generalized selfadjointness of operators generated by gen-

eralized Jacobi Hermitian matrix

Now, we consider a generalized selfadjointness of generalized Jacobi Hermitian matrices

introduced in [4].

Let us consider complex Hilbert space

l2 = H0 ⊕ H1 ⊕ H2 ⊕ · · · , Hi = C
i+1, i ∈ N0,

of vectors l2 ∋ f = ( fn)∞
n=0, where fn = ( fn;j)

n
j=0 ∈ Hn; f =

∞

∑
n=0

n

∑
j=0

fn;jen;j (here en;j, n, j ∈ N0,

are elements of standard basis in l2) with scalar product

( f , g)l2
=

∞

∑
n=0

( fn, gn)Hn ; f , g ∈ l2.

Consider the following Hilbert space rigging of type (1)

l2

(

p−1
)

⊃ l2 ⊃ l2(p), (9)

where l2(p) is space of infinite vectors with scalar product

( f , g)l2(p) =
∞

∑
n=0

( fn, gn)Hn pn; f , g ∈ l2(p),

with a given weight p = (pn)∞
n=0, pn ≥ 1. In this case the operator J acts as follows

l2 ∋ u 7→ Ju ∈ l2(p) : (Ju)n = p−1/2
n un.

The operator J : l2

(

p−1
)

→ l2 acts in the same way on elements of space l2

(

p−1
)

.

Let us consider in the space l2 a Hermitian matrix G = (Gj,k)
∞
j,k=0 with an operator-valued

complex elements Gj,k : Hk → Hj, Gj,k = (Gj,k;α,β)
j k
α=0β=0, of the following block Jacobi structure

G =











b0 c0 0 0 . . .

a0 b1 c1 0 . . .

0 a1 b2 c2 . . .
...

...
...

...
. . .











, where

ai = Gi+1,i : Hi → Hi+1,

bi = Gi,i : Hi → Hi,

ci = Gi,i+1 : Hi+1 → Hi.

(10)

For Hermitianess of matrix G it is necessary and sufficient that bi = b∗i , ai = c∗i , where

“∗” denotes adjoint to matrix.

Let f ∈ l2. Then the matrix G acts on f in the following manner

(G f )n = an−1 fn−1 + bn fn + cn fn+1, with f−1 = 0. (11)

Let us consider an operator G′ : lfin → lfin, which acts on finite sequences f ∈ lfin as in (11),

i.e. G′ f = G f , f ∈ lfin. Operator G′ is Hermitian. So, we can consider operator G : l2 → l2,

which is equal to closure of the operator G′ in l2. In the same way as in Section 3 we can also

define an operator G : l2(p) → l2

(

p−1
)

.

Let us consider for some complex number z the recurrence relation
(

Gϕ(z)
)

n
= an−1ϕn−1(z) + bn ϕn(z) + cn ϕn+1(z) = zϕn(z), n ∈ N0, (12)

where ϕ(z) = (ϕn(z))∞
n=0, ϕn(z) ∈ Hn, is a such sequence that ϕ−1(z) := 0. In article [4],

there was considered problem of selfadjointness of the operator G and there were obtained the

following results.
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Proposition 6. Operator G is selfadjoint if and only if for any non-zero solution of system (12)

the condition
∞

∑
n=0

‖ϕn(z)‖2
Hn

= ∞ holds, where z ∈ C \ R.

Proposition 7. Let a matrix G be such that
∞

∑
n=0

(

‖an‖n;n+1 + ‖cn‖n+1;n

)−1
= ∞, where ‖·‖k; l

defines norm of (l + 1)× (k + 1)-matrix or respective operator which acts from Hk to Hl. Then

operator G is selfadjoint.

The situation about generalized selfadjointness of G is similar to described one in Section 3.

So, from Theorem 1 it follows that generalized selfadjointness of G : l2(p) → l2

(

p−1
)

is

equivalent to selfadjointness of operator JGJ : l2 → l2, where J and J are respective operators

for Hilbert space rigging (9). Operator JGJ acts as follows

(JGJ f )n = (JGJ f )n = p−1/2
n

(

an−1 p−1/2
n−1 fn−1 + bnp−1/2

n fn + cn p−1/2
n+1 fn+1

)

= an−1 p−1/2
n−1 p−1/2

n fn−1 + bn p−1
n fn + cn p−1/2

n p−1/2
n+1 fn+1,

where f ∈ D(JGJ) and f−1 := 0. Let us consider generalized Jacobi matrix of type (10) of view

Gp =











b0p−1
0 c0 p−1/2

0 p−1/2
1 0 0 0 . . .

a0 p−1/2
0 p−1/2

1 b1 p−1
1 c1p−1/2

1 p−1/2
2 0 0 . . .

0 a1 p−1/2
1 p−1/2

2 b2p−1
2 c2p−1/2

2 p−1/2
3 0 . . .

...
...

...
...

...











.

In the same way as in Section 3 we can generate operator Gp : l2 → l2 by matrix Gp. Similarly

to the proof of Theorem 3 it is easy to show that the following its analog takes place.

Theorem 8. Operators JGJ : l2 → l2 and Gp : l2 → l2 are equal.

Also, some other analogs of Theorems 4 and 5 take place.

Theorem 9. For any generalized Jacobi matrix G of view (10) there exists a weight p = (pn)∞
n=0,

such that the operator G : l2(p) → l2

(

p−1
)

is generalized selfadjoint.

Proof. Let the weight p = (pn)∞
n=0 be such that

pn := ‖an−1‖n−1;n + ‖an‖n;n+1 + ‖cn−1‖n;n−1 + ‖cn‖n+1;n + 1, n ∈ N0.

Proceeding in the same way as in Theorem 4, from Proposition 7 we obtain that G is gen-

eralized selfadjoint.

Theorem 10. Let G be an arbitrary matrix of the form (10). Then there exists a Hilbert space

rigging (9), such that G : ℓ2(p) → ℓ2

(

p−1
)

is bounded and generalized selfadjoint and

D(G) = l2(p).

Proof. The proof of this theorem is similar to proof of Theorem 5, if we consider a weight

p = (pn)∞
n=0, such that

pn := ‖an−1‖n−1;n + ‖an‖n;n+1 + ‖bn‖n;n + ‖cn−1‖n;n−1 + ‖cn‖n+1;n + 1, n ∈ N0.

Remark 3. Let us notice that the sufficient condition of the selfadjointness of the operator G

from Proposition 7 is also sufficient for the generalized selfadjointness of G.
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Iвасюк I.Я. Узагальнена самоспряженiсь операторiв, породжених ермiтовими якобiєвими матри-

цями // Карпатськi матем. публ. — 2024. — Т.16, №1. — C. 203–214.

Дослiджується самоспряженiсть у сенсi гiльбертового оснащення i пов’язанi з цим питання.

Доведено, що ця узагальнена самоспряженiсть довiльного оператора, який дiє з позитивного

в негативний простiр, еквiвалентна звичайнiй самоспряженостi певним чином перетвореного

цього оператора у базовому (“нульовому”) просторi.

Також розглянуто оператори породженi класичними i узагальненими якобiєвими ермiто-

вими матрицями, їхня самоспряженiсть i узагальнена самоспряженiсть в сенсi вагового гiль-

бертового оснащення. Доведено певнi достатнi умови узагальненої самоспряженостi цих опе-

раторiв. Використовуючи отриманi результати пояснено можливiсть побудови прикладу уза-

гальненої самоспряженостi оператора, який не самоспряжений в класичному сенсi.

Ключовi слова i фрази: оснащення гiльбертового простору, ермiтовий оператор, самоспря-

жений оператор, трохдiагональна блочна матриця, матриця Якобi.


