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Wick multiplication and its relationship with integration and
stochastic differentiation on spaces of nonregular test

functions in the Lévy white noise analysis

Kachanovsky N.A.

We deal with spaces of nonregular test functions in the Lévy white noise analysis, which are

constructed using Lytvynov’s generalization of a chaotic representation property. Our goal is to

study properties of a natural multiplication — a Wick multiplication on these spaces, and to describe

the relationship of this multiplication with integration and stochastic differentiation. More exactly,

we establish that the Wick product of nonregular test functions is a nonregular test function; show

that when employing the Wick multiplication, it is possible to take a time-independent multiplier

out of the sign of a generalized stochastic integral; establish an analog of this result for a Pettis

integral (a weak integral); obtain a representation of the generalized stochastic integral via formal

Pettis integral from the Wick product of the original integrand by a Lévy white noise; and prove

that the operator of stochastic differentiation of first order on the spaces of nonregular test functions

satisfies the Leibnitz rule with respect to the Wick multiplication.
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Introduction

Many problems in modern mathematics and physics require a theory of test and gene-

ralized functions depending on infinitely many variables, i.e. with arguments belonging to

infinite-dimensional spaces. Such a theory can be constructed by different ways. One of the

most successful of them consists in introducing of spaces of test and generalized functions such

that the pairing between elements of these spaces is generated by integration with respect

to a probability measure on some dual nuclear space. At first, it was the Gaussian measure

(see, e.g., [2, 17, 30, 31]), the corresponding theory is called the Gaussian white noise analysis,

afterwards it were realized numerous generalizations. In particular, important results were

obtained using the generalized Meixner measure [35], and the Lévy white noise measure (see,

e.g., [7, 8, 32]), the corresponding theories are called the Miexner and Lévy white noise analysis,

respectively.

An important role in the Gaussian analysis belongs to a so-called chaotic representation prop-

erty (CRP): roughly speaking, any square integrable with respect to the Gaussian measure ran-

dom variable can be presented as a series of repeated Itô’s stochastic integrals with nonrandom

integrands (see, e.g., [33]). Using CRP, one can construct spaces of test and generalized func-
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tions, introduce and study different operators and operations on these spaces, in particular,

stochastic integrals and derivatives, a Wick multiplication etc. Unfortunately, in the Meixner

and Lévy analysis there is no CRP, generally speaking [39]; nevertheless, there are various

generalizations of this property. Specifically, in the Meixner analysis a square integrable ran-

dom variable can be decomposed in series of generalized Meixner polynomials [35]; in the

Lévy analysis there are decompositions connected with a Lévy-Khintchine representation of

a Lévy process (Itô’s approach [19], see also [6]), decompositions by repeated stochastic in-

tegrals from nonrandom integrands with respect to so-called orthogonalized centered power

jump processes (Nualart-Schoutens’ approach [34], see also [36]), decompositions by special

orthogonal functions (Lytvynov’s approach [32], see also [5]), special orthogonal decomposi-

tions with numeric coefficients (Øksendal’s approach [8], see also [7]) etc. The relationships

between these generalizations of CRP are described in, e.g., [1, 7, 8, 23, 32, 38, 40].

In this paper, we deal with one of the most useful generalizations of CRP in the Lévy

analysis, which is proposed by E.W. Lytvynov [32]. The idea of this generalization is to de-

compose square integrable random variables in series of special orthogonal functions with

nonrandom kernels, by analogy with decompositions of square integrable random variables

by Hermite polynomials in the Gaussian analysis (remind that the last decompositions are

equivalent to the decompositions by repeated Itô’s stochastic integrals). As in the Gaussian

analysis, it is possible to use Lytvynov’s generalization of CRP, in particular, in order to con-

struct and study spaces of regular and nonregular test and generalized functions [20], intro-

duce and investigate various operators and operations on these spaces etc. It should be noted

that the extended stochastic integral and the Hida stochastic derivative on the spaces of regular

test and generalized functions are introduced and studied in [11, 20], operators of stochastic

differentiation — in [9, 10, 14], elements of a Wick calculus and its relationship with opera-

tors of stochastic differentiation and integration on the spaces of regular generalized functions

— in [12, 13], on the spaces of regular test functions — in [25]. As for the spaces of nonregular

test and generalized functions, the corresponding results are presented in [20, 26–29]. The pa-

per [24] is a survey of some author’s results related to the development of the Lévy white noise

analysis in terms of Lytvynov’s generalization of CRP.

In order to build a meaningful and applicable theory of test and generalized functions it

is necessary to introduce a natural multiplication on spaces of the mentioned functions. As is

known, in various versions of the white noise analysis such a multiplication is a so-called Wick

multiplication. In particular, using the Wick multiplication, one can take a time-independent

multiplier out of the sign of an extended stochastic integral and of a Pettis integral (a weak

integral). In addition, an extended stochastic integral can be presented as a Pettis integral (or a

formal Pettis integral, depending on the concrete situation) from the Wick product of the origi-

nal integrand by the corresponding white noise. Also an operator of stochastic differentiation

is a differentiation (i.e. satisfies the Leibnitz rule) with respect to the Wick multiplication. On

the above-mentioned spaces of nonregular generalized functions in the Lévy analysis such re-

sults were obtained in [26,29], on the spaces of regular generalized functions — in [12,13], on the

spaces of regular test functions — in [25].

The aim of the present paper is to introduce and to study by analogy with [21,25] the Wick

product on the spaces of nonregular test functions in the Lévy analysis; to transfer some results

of [13, 25] to these spaces; and to consider certain related topics, in particular, the relationship

between Wick multiplication and stochastic differentiation.
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The paper is organized in the following manner. In the first section, we consider a Lévy pro-

cess L and recall the construction of a required probability triplet connected with L; afterwards

we describe Lytvynov’s generalization of CRP and recall the construction of a nonregular rig-

ging of the space of square integrable random variables (the positive and negative spaces of

this rigging are the spaces of nonregular test and generalized functions respectively). In the

second section, we introduce the Wick product on the spaces of nonregular test functions and

study its main properties. In the third section, we recall the definition of a generalized stochas-

tic integral (a natural analog of the extended stochastic integral on the spaces of nonregular test

functions); show that when employing the Wick multiplication, it is possible to take a time-

independent multiplier out of the sign of this integral; obtain an analog of this result for the

Pettis integral; and prove a theorem about a representation of the generalized stochastic in-

tegral via a formal Pettis integral. In the fourth section, we recall the definition of operators

of stochastic differentiation on the spaces of nonregular test functions and establish that the

operator of stochastic differentiation of first order is a differentiation with respect to the Wick

multiplication.

1 Preliminaries

We denote by ‖ · ‖H or | · |H the norm in a space H; by (·, ·)H the real, i.e. bilinear, scalar

product in H; by 〈〈·, ·〉〉H the dual pairing generated by the scalar product in H; by B the Borel

σ-algebra and by 1∆ the indicator of a set ∆. Further, we use a designation pr lim (respectively,

ind lim) for a projective (respectively, inductive) limit of a family of spaces, this designation im-

plies that the limit space is endowed with the projective (respectively, inductive) limit topology

(see, e.g., [3] for the detailed description).

1.1 A Lévy process and its probability space

Denote R+ := [0,+∞). Let L = (Lu)u∈R+ be a real-valued locally square integrable Lévy

process (i.e. a continuous in probability random process on R+ with stationary independent

increments and such that L0 = 0, see, e.g., [4] for the detailed description) without Gaussian

part and drift. As is known (e.g., [8]), the characteristic function of L is

E

[
eiθLu

]
= exp

[
u
∫

R

(
eiθx − 1 − iθx

)
ν(dx)

]
, (1)

where ν is the Lévy measure of L, which is a measure on
(
R,B(R)

)
, E denotes the expecta-

tion. We assume that ν is a Radon measure, whose support contains an infinite number of points,

ν
(
{0}

)
= 0, there exists ε > 0 such that

∫
R

x2eε|x|ν(dx) < ∞, and
∫

R
x2ν(dx) = 1.

Let us define a measure of the white noise of L. Denote by D the set of all real-valued

infinite-differentiable functions on R+ with compact supports. As is well known, D can be

endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [3], see

also Subsection 1.3). Let D′ be the set of linear continuous functionals on D. Note that D and

D′ are the positive and negative spaces of a chain

D′ ⊃ L2 (R+) ⊃ D, (2)

where L2 (R+) is the space of (classes of) real-valued functions on R+, square integrable with

respect to the Lebesgue measure (e.g., [3]). Denote by 〈·, ·〉 the dual pairing between elements

of D′ and D, generated by the scalar product in L2 (R+).
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Definition 1. A probability measure µ on
(
D′, C (D′)

)
, where C denotes the cylindrical

σ-algebra, with the Fourier transform
∫

D′
ei〈ω,ϕ〉µ(dω) = exp

[∫

R+×R

(
eiϕ(u)x − 1 − iϕ(u)x

)
duν(dx)

]
, ϕ ∈ D, (3)

is called the measure of the Lévy white noise.

The existence of µ follows from the Bochner-Minlos theorem (e.g., [18]), see [32]. Below we

assume that the σ-algebra C (D′) is completed with respect to µ.

Consider a probability space (probability triplet)
(
D′, C (D′) , µ

)
. Let us denote by (L2) :=

L2
(
D′, C(D′), µ

)
the space of square integrable random variables, i.e. the space of (classes of)

complex-valued functions on D′, square integrable with respect to µ. Let f ∈ L2 (R+) and a

sequence (ϕk ∈ D)k∈N converges to f in L2 (R+) as k → ∞
(
remind that D is a dense set in

L2 (R+)
)
. One can show [7, 8, 23, 32] that 〈◦, f 〉 :=

(
L2
)
- lim
k→∞

〈◦, ϕk〉 is a well-defined element

of
(

L2
)
.

Put 1[0,0) ≡ 0. It follows from (1) and (3) that
(
〈◦, 1[0,u)〉

)
u∈R+

can be identified with a Lévy

process on the probability space
(
D′, C

(
D′

)
, µ

)
(see, e.g., [7, 8]). So, for each u ∈ R+ we have

Lu = 〈◦, 1[0,u)〉 ∈
(

L2
)
.

Note that the derivative in the sense of generalized functions of a Lévy process (the Lévy

white noise) is L̇·(ω) = 〈ω, δ·〉 ≡ ω(·), where δ is the Dirac delta-function. Therefore L̇ is a

generalized random process in the sense of [15] with trajectories from D′, and µ is the measure

of L̇ in the classical sense of this notion [16].

1.2 Lytvynov’s generalization of the chaotic representation property

In what follows, we denote by a subscript C complexifications of spaces; by a symbol ⊗̂

the symmetric tensor multiplication; and preserve the above-introduced notation 〈·, ·〉 for the

dual pairings in symmetric tensor powers of the complexification of chain (2) (actually, of more

general chain (7), i.e. for the dual pairings between elements of negative and positive spaces

from chains (40)). Designate Z+ := N ∪ {0}. Let P be the set of complex-valued polynomials

on D′ that consists of zero and elements of the form

f (ω) =

N f

∑
n=0

〈
ω⊗n, f (n)

〉
, ω ∈ D′, f (n) ∈ D⊗̂n

C
, N f ∈ Z+, f (N f ) 6= 0,

here N f is called the power of a polynomial f ;
〈

ω⊗0, f (0)
〉

:= f (0) ∈ D⊗̂0
C

:= C. The measure

µ of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3)

and properties of the measure ν, see also [32]), therefore P is a dense set in
(

L2
)

[37]. Let Pn,

n ∈ Z+, be the set of polynomials of power smaller than or equal to n, by Pn we denote the

closure of Pn in
(

L2
)
. Let Pn := Pn ⊖Pn−1 for all n ∈ N be the orthogonal difference in

(
L2
)
;

put P0 := P0. It is clear that (
L2
)
=

∞
⊕

n=0
Pn. (4)

Let f (n) ∈ D⊗̂n
C

, n ∈ Z+. Denote by :
〈
◦⊗n, f (n)

〉
: ∈

(
L2
)

the orthogonal projection of

a monomial
〈
◦⊗n, f (n)

〉
onto Pn. We define real (bilinear) scalar products (·, ·)ext on D⊗̂n

C
,

n ∈ Z+, by setting
(

f (n), g(n)
)

ext
:=

1

n!

∫

D′
:
〈

ω⊗n, f (n)
〉

::
〈

ω⊗n, g(n)
〉

:µ(dω), f (n), g(n) ∈ D⊗̂n
C

. (5)
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The well-posedness of this definition is proved (up to obvious modifications) in [32].

Denote by | · |ext the norms corresponding to scalar products (5), i.e. | · |ext :=
√
(·, ·)ext.

Let H
(n)
ext , n ∈ Z+, be the completions of D⊗̂n

C
with respect to these norms. For each F(n) ∈ H

(n)
ext

we define a Wick monomial :
〈
◦⊗n, F(n)

〉
:

def
=

(
L2

)
- lim
k→∞

:
〈
◦⊗n, f

(n)
k

〉
:, where D⊗̂n

C
∋ f

(n)
k → F(n)

as k → ∞ in H
(n)
ext . It is easy to prove by the method of “mixed sequences” that this definition

is well-posed, and to show that :
〈
◦⊗0, F(0)

〉
: =

〈
◦⊗0, F(0)

〉
= F(0) and :

〈
◦, F(1)

〉
: =

〈
◦, F(1)

〉

(cf. [32]).

In the next statement, which follows from (4) and the fact that for each n ∈ Z+ the set{
:
〈
◦⊗n, f (n)

〉
:
∣∣ f (n)∈D⊗̂n

C

}
is dense in Pn, and therefore Pn=

{
:
〈
◦⊗n, F(n)

〉
:
∣∣ F(n) ∈ H

(n)
ext

}
,

Lytvynov’s generalization of the chaotic representation property (CRP) is described.

Theorem 1 ([32]). A random variable F belongs to
(

L2
)

if and only if there exists a unique

sequence of kernels F(n) ∈ H
(n)
ext , n ∈ Z+, such that

F =
∞

∑
n=0

:
〈
◦⊗n, F(n)

〉
: (6)

(
the series converges in

(
L2
))

and

‖F‖2
(L2) =

∫

D′

∣∣F(ω)
∣∣2

µ(dω) = E|F|2 =
∞

∑
n=0

n!
∣∣∣F(n)

∣∣∣
2

ext
< ∞.

Remark 1. In this paper, we do not use directly an explicit (calculation-friendly) formula for

scalar products (5) and therefore we prefer not to write it down. The interested reader can find

this formula in [32]; in another record form it is given, e.g., in [12, 14, 20, 23, 24].

Denote H := L2 (R+), then HC = L2 (R+)C
. It follows from the explicit formula for

(·, ·)ext that H
(1)
ext = HC, and for n ∈ N\{1} one can identify H⊗̂n

C
with the proper sub-

space of H
(n)
ext that consists of “vanishing on diagonals” elements

(
roughly speaking, such that

F(n) (u1, . . . , un) = 0 if there exist k, j ∈ {1, . . . , n}, k 6= j, but uk = uj

)
. In this sense the space

H
(n)
ext is an extension of H⊗̂n

C
, this explains why we use the subscript “ext” in our designations.

Also we note that for each n ∈ N\{1} the space H
(n)
ext is the symmetric subspace of the space of

(classes of) complex-valued functions on Rn
+, square integrable with respect to a certain Radon

measure.

1.3 A nonregular rigging of the space of square integrable random variables

Let T be the set of indexes τ = (τ1, τ2), where τ1 ∈ N, τ2 is an infinite differentiable

function on R+ such that for all u ∈ R+ τ2(u) ≥ 1. Denote by Hτ the real Sobolev space on

R+ of order τ1 weighted by the function τ2, i.e. Hτ is the completion of D with respect to the

norm generated by the scalar product

(ϕ, ψ)Hτ
=

∫

R+

(
ϕ(u)ψ(u) +

τ1

∑
k=1

ϕ[k](u)ψ[k](u)

)
τ2(u)du,

here ϕ[k] and ψ[k] are derivatives of order k of functions ϕ and ψ, respectively. As is known

(see, e.g., [3]), D = pr lim
τ∈T

Hτ

(
moreover, for any n ∈ N we have D⊗̂n = pr lim

τ∈T

H⊗̂n
τ

)
, and for
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each τ ∈ T the space Hτ is densely and continuously embedded into H ≡ L2 (R+). Therefore

one can consider a chain
(
cf. (2)

)

D′ ⊃ H−τ ⊃ H ⊃ Hτ ⊃ D, (7)

where H−τ, τ ∈ T, are the spaces dual of Hτ with respect to H. Note that by the Schwartz

theorem [3], we have D′ = ind lim
τ∈T

H−τ (in what follows we will consider D′ as a topological

space with the inductive limit topology).

Denote the norms in Hτ,C and its symmetric tensor powers by | · |τ , i.e. for f (n) ∈ H⊗̂n
τ,C,

n ∈ Z+,
∣∣ f (n)

∣∣
τ
=

√(
f (n), f (n)

)
H⊗̂n

τ,C

(
note that H⊗̂0

τ,C := C and
∣∣ f (0)

∣∣
τ
=

∣∣ f (0)
∣∣).

It follows from results of [20] that one can modify T (it is necessary to remove from T some

“bad” indexes; and we further assume that T is modified) in order to obtain the following

statement.

Proposition 1. 1) For each τ ∈ T the measure µ of a Lévy white noise is concentrated on

H−τ, i.e. µ (H−τ) = 1.

2) For each τ ∈ T and each n ∈ Z+ the space H⊗̂n
τ,C is densely and continuously embedded

into the space H
(n)
ext , and there exists c(τ) > 0 such that for all f (n) ∈ H⊗̂n

τ,C we have
∣∣ f (n)

∣∣2
ext

≤ n!c(τ)n
∣∣ f (n)

∣∣2
τ
.

Let τ ∈ T and q ∈ Z+. Denote

PW :=

{
f =

N f

∑
n=0

:
〈
◦⊗n, f (n)

〉
:
∣∣ f (n) ∈ D⊗̂n

C
, N f ∈ Z+

}
⊂

(
L2

)
.

For f = ∑
N f

n=0 :
〈
◦⊗n, f (n)

〉
:, g = ∑

Ng

n=0 :
〈
◦⊗n, g(n)

〉
: ∈ PW , we define real (bilinear) scalar

products (·, ·)τ,q on PW by setting

( f , g)τ,q :=

min(N f ,Ng)

∑
n=0

(n!)2 2qn
(

f (n), g(n)
)
H⊗̂n

τ,C

. (8)

The well-posedness of this definition is proved in [26].

Remark 2. One can introduce more general scalar products on PW , writting in (8) Kqn with

arbitrary K > 1 instead of 2qn. But such a generalization is not essential for our considerations,

so, for simplification of presentation we will restrict ourselves to the case K = 2.

Denote by ‖ · ‖τ,q the norms corresponding to scalar products (8), i.e. ‖ · ‖τ,q :=
√
(·, ·)τ,q.

Let (Hτ)q be the completions of PW with respect to these norms. Set (Hτ) := pr lim
q→∞

(Hτ)q,

(D) := pr lim
τ∈T,q→∞

(Hτ)q. As is easy to see, f belongs to (Hτ)q if and only if it can be uniquely

presented in the form
(
cf. (6)

)

f =
∞

∑
n=0

:
〈
◦⊗n, f (n)

〉
:, f (n) ∈ H⊗̂n

τ,C (9)
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(
the series converges in (Hτ)q

)
, with

‖ f‖2
(Hτ)q

=
∞

∑
n=0

(n!)2 2qn
∣∣∣ f (n)

∣∣∣
2

τ
< ∞ (10)

(since by Proposition 1 for each n ∈ Z+ we have H⊗̂n
τ,C ⊆ H

(n)
ext , for f (n) ∈ H⊗̂n

τ,C :
〈
◦⊗n, f (n)

〉
: is

a well defined Wick monomial, see Subsection 1.2). Further, f ∈ (Hτ)
(

f ∈ (D)
)

if and only if

f can be uniquely presented in form (9) and norm (10) is finite for each q ∈ Z+ (for each τ ∈ T

and each q ∈ Z+).

Proposition 2 ([20, 26]). For each τ ∈ T there exists q0(τ) ∈ Z+ such that for each

q ∈ Nq0(τ) :=
{

q0(τ), q0(τ) + 1, . . .
}

the space (Hτ)q is densely and continuously embedded

into
(

L2
)
.

In view of this proposition one can consider a chain

(
D′

)
⊃ (H−τ) ⊃ (H−τ)−q ⊃

(
L2

)
⊃ (Hτ)q ⊃ (Hτ) ⊃ (D) , τ ∈ T, q ∈ Nq0(τ), (11)

where (H−τ)−q, (H−τ) = ind lim
q′→∞

(H−τ)−q′ and (D′) = ind lim
τ̃∈T,q′→∞

(H−τ̃)−q′ are the spaces dual

of (Hτ)q, (Hτ) and (D) with respect to
(

L2
)
.

In what follows, we assume that τ ∈ T, q ∈ Nq0(τ).

Definition 2. Chain (11) is called a nonregular rigging of the space
(

L2
)
. The positive spaces

of this rigging (Hτ)q, (Hτ) and (D) are called (Kondratiev-type) spaces of nonregular test

functions. The negative spaces of this rigging (H−τ)−q, (H−τ) and (D′) are called (Kondratiev-

type) spaces of nonregular generalized functions.

Remark 3. Let τ ∈ T, q ∈ Z+ and β ∈ [0, 1]. By analogy with the regular case one can

introduce on PW scalar products (·, ·)τ,q,β by setting

( f , g)τ,q,β :=

min(N f ,Ng)

∑
n=0

(n!)1+β 2qn
(

f (n), g(n)
)
H⊗̂n

τ,C

, f , g ∈ PW,

(
cf. (8)

)
, and define “parametrized spaces of nonregular test functions” (Hτ)

β
q as completions

of PW with respect to the norms generated by these scalar products. It is possible to study

properties of the spaces (Hτ)
β
q and their projective limits, to introduce and to study different

operators and operations on them; such considerations are interesting by itself and can be

useful for applications. But (Hτ)
β
q 6⊂

(
L2
)

if β < 1 (except for the Gaussian and Poissonian

special cases, which we do not consider in this paper), so we cannot consider (Hτ)
β
q with β < 1

as spaces of test functions in the framework of the Lévy white noise analysis.

Finally, for completeness and to introduce some necessary concepts we describe natural

orthogonal bases in the spaces (H−τ)−q. Let us consider chains

D′
C

(n)
⊃ H

(n)
−τ,C ⊃ H

(n)
ext ⊃ H⊗̂n

τ,C ⊃ D⊗̂n
C

, n ∈ N, (12)

where H
(n)
−τ,C and D′

C

(n) = ind lim
τ̃∈T

H
(n)
−τ̃,C are the spaces dual of H⊗̂n

τ,C and D⊗̂n
C

= pr lim
τ̃∈T

H⊗̂n
τ̃,C

with respect to H
(n)
ext . Set D⊗̂0

C
= H⊗̂0

τ,C = H
(0)
ext = H

(0)
−τ,C = D′

C

(0) := C. In what follows we



68 Kachanovsky N.A.

denote by 〈·, ·〉ext the real (bilinear) dual pairings between elements of negative and positive

spaces from chains (12), these pairings are generated by the scalar products in H
(n)
ext .

The next statement follows from the definition of the spaces (H−τ)−q and the general du-

ality theory (cf. [20, 22]).

Proposition 3. There exists a system of generalized functions
{

:
〈
◦⊗n, F

(n)
ext

〉
: ∈ (H−τ)−q | F

(n)
ext ∈ H

(n)
−τ,C, n ∈ Z+

}

such that

1) for F
(n)
ext ∈ H

(n)
ext ⊂ H

(n)
−τ,C, :

〈
◦⊗n, F

(n)
ext

〉
: is a Wick monomial that is defined in

Subsection 1.2;

2) any generalized function F ∈ (H−τ)−q can be uniquely presented as a series

F =
∞

∑
n=0

:
〈
◦⊗n, F

(n)
ext

〉
:, F

(n)
ext ∈ H

(n)
−τ,C, (13)

that converges in (H−τ)−q, i.e.

‖F‖2
(H−τ)−q

=
∞

∑
n=0

2−qn
∣∣∣F(n)

ext

∣∣∣
2

H
(n)
−τ,C

< ∞; (14)

and, vice versa, any series (13) with finite norm (14) is a generalized function from

(H−τ)−q, i.e. such a series converges in (H−τ)−q;

3) the dual pairing between F ∈ (H−τ)−q and f ∈ (Hτ)q, that is generated by the scalar

product in
(

L2
)
, has the form

〈〈F, f 〉〉(L2) =
∞

∑
n=0

n!
〈

F
(n)
ext , f (n)

〉
ext

,

where F
(n)
ext ∈ H

(n)
−τ,C and f (n) ∈ H⊗̂n

τ,C are the kernels from decompositions (13) and (9)

for F and f , respectively.

It is clear that F belongs to (H−τ)
(
respectevely, to (D′)

)
if and only if it can be uniquely

presented in form (13) and norm (14) is finite for some q ∈ Nq0(τ)

(
respectevely, for some τ ∈ T

and some q ∈ Nq0(τ)

)
.

2 Wick product on the spaces of nonregular test functions

It is known that the development of a meaningful and applicable theory of test and gen-

eralized functions depending on infinitely many variables requires a natural multiplication

on spaces of the mentioned functions. Unfortunately, the classical pointwise multiplication is

not suitable for this role: the pointwise product of test functions may not belong to the corre-

sponding space, and the pointwise product of generalized functions is undefined, in general.

However, this is not a serious problem, since on the spaces of test and generalized functions it

is possible to introduce a natural multiplication, called a Wick multiplication.

Recall that the Wick multiplication on the spaces of regular generalized functions in the Lévy

white noise analysis is introduced and studied in [12] (see also [13]), on the spaces of regular test
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functions — in [25], on the spaces of nonregular generalized functions — in [26] (see also [29]).

Now our goal is to introduce and study the Wick multiplication on the spaces of nonregular

test functions. It is worth noting that an important feature of the regular case is the fact that the

Wick multiplication on the spaces of test functions is a restriction to these spaces of the Wick

multiplication, defined on the spaces of generalized functions. In the nonregular case there is

no such a property, which complicates the theory somewhat.

Remark 4. Unfortunately, the spaces from nonregular rigging (11) of
(

L2
)
, in particular, the

spaces of nonregular test and generalized functions in the Lévy analysis (except of the Gaus-

sian and Poissonian special cases, which, as mentioned above, we do not consider in this pa-

per), have the following unpleasant feature: not all operators and operations can be naturally

continued (respectively, restricted) from a narrower to a wider (respectively, from a wider to a

narrower) space. Specifically, a stochastic derivative and operators of stochastic differentiation

cannot be naturally continued from
(

L2
)

to (H−τ)−q; an extended stochastic integral cannot

be naturally restricted from
(

L2
)

to (Hτ)q; for elements of (Hτ) ⊂ (H−τ) the Wick product,

introduced on (H−τ), does not belong to (Hτ), in general; etc. However, this problem has a

solution: one can introduce natural analogs of the stochastic derivative and of the operators of

stochastic differentiation on (H−τ)−q, (H−τ) and (D′) [27]; a natural analog of the extended

stochastic integral on (Hτ)q, (Hτ) and (D) [27]; a natural Wick multiplication on (Hτ) and

(D) (see below); etc.

The classical definition of a Wick product is based on a so-called S-transform. In particular,

for F, G ∈ (H−τ) we can define the Wick product F♦G ∈ (H−τ) as F♦G := S−1(SF · SG),

where (SF)(λ) := ∑
∞
n=0

〈
F
(n)
ext , λ⊗n

〉
ext

, λ ∈ DC, F
(n)
ext ∈ H

(n)
−τ,C are the kernels from decomposi-

tion (13) for F (see [26]). But, as noted above, such a definition is not appropriate for the spaces

(Hτ). Indeed, as established in [26], the Wick product on (H−τ) can be presented as

F♦G =
∞

∑
n=0

:
〈
◦⊗n,

n

∑
k=0

F
(k)
ext ⋄ G

(n−k)
ext

〉
:, (15)

where a multiplication ⋄ is a natural analog of the symmetric tensor multiplication on the

negative spaces from chains (12) (this multiplication will be introduced in Subection 4.1, see

(42)), F
(k)
ext ∈ H

(k)
−τ,C and G

(n−k)
ext ∈ H

(n−k)
−τ,C are the kernels from decompositions (13) for F

and G, respectively. But for f (k) ∈ H⊗̂k
τ,C ⊂ H

(k)
−τ,C and g(n−k) ∈ H⊗̂n−k

τ,C ⊂ H
(n−k)
−τ,C we have

f (k) ⋄ g(n−k) 6∈ H⊗̂n
τ,C, generally speaking, therefore f♦g 6∈ (Hτ) for f , g ∈ (Hτ) ⊂ (H−τ) in the

general case. Nevertheless, a natural Wick product on (Hτ) can be defined using a suitable

analog of the S-transform. Namely, for f ∈ (Hτ) we set formally

(Ŝ f )(λ) :=
∞

∑
n=0

〈
f (n), λ⊗n

〉
, (16)

where λ ∈ DC and f (n) ∈ H⊗̂n
τ,C are the kernels from decomposition (9) for f . Note that, as in

the classical case, (Ŝ f )(0) = f (0), Ŝ1 ≡ 1.

Definition 3. For f1, . . . , fm ∈ (Hτ) we define the Wick product f1� · · ·� fm by setting formally

f1� · · ·� fm := Ŝ−1
(

Ŝ f1 · · · · · Ŝ fm

)
.
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It is easy to see that the Wick multiplication� is commutative, associative, distributive, and

for any α ∈ C we have

(α f1)� f2� · · ·� fm = f1� (α f2)� · · ·� fm = · · ·

= f1� · · ·� fm−1� (α fm) = α ( f1� · · ·� fm) ≡ α f1� · · ·� fm.

Remark 5. By the generalized and classical Cauchy-Bunyakovsky inequalities and (10) for each

λ ∈ DC and each q ∈ Z+ we have

∣∣(Ŝ f
)
(λ)

∣∣ ≤
∞

∑
n=0

∣∣ f (n)
∣∣
H⊗̂n

τ,C

∣∣λ⊗n
∣∣
H⊗̂n

−τ,C
=

∞

∑
n=0

(
n!2qn/2

∣∣ f (n)
∣∣
H⊗̂n

τ,C

) ((
n!2qn/2

)−1
|λ|nH−τ,C

)

≤

√
∞

∑
n=0

(n!)2 2qn
∣∣ f (n)

∣∣2
H⊗̂n

τ,C

√√√√ ∞

∑
n=0

|λ|2n
H−τ,C

(n!)2 2qn
= ‖ f‖(Hτ )q

√√√√ ∞

∑
n=0

|λ|2n
H−τ,C

(n!)2 2qn
< ∞,

where H⊗̂n
−τ,C, n ∈ N, are the symmetric tensor powers of the complexifications of negative

spaces from chain (7) (these spaces are dual of H⊗̂n
τ,C with respect to H⊗̂n

C
), H⊗̂0

−τ,C := C. Actu-

ally, Ŝ f is a well-defined complex-valued function on DC for each f ∈ (Hτ) (cf. [26]). Moreover,

it can be proved that for f1, . . . , fm ∈ (Hτ) the pointwise product of functions Ŝ f1, . . . , Ŝ fm can

be decomposed in a pointwise convergent series of form (16).

Following the classical scheme of studying the Wick multiplication, let us write out a “coor-

dinate formula” for the Wick product on (Hτ), i.e. a representation of f1� · · ·� fm via kernels

from decompositions (9) for f1, . . . , fm. Direct calculation by analogy with the Meixner analy-

sis [22] gives the following result.

Proposition 4. For f1, . . . , fm ∈ (Hτ) we have

f1� · · ·� fm =
∞

∑
n=0

:
〈
◦⊗n, ∑

k1,...,km∈Z+
k1+···+km=n

f
(k1)
1 ⊗̂ · · · ⊗̂ f

(km)
m

〉
:, (17)

in particular, for f , g ∈ (Hτ) we get

f�g =
∞

∑
n=0

:
〈
◦⊗n,

n

∑
k=0

f (k)⊗̂g(n−k)
〉

: (18)

(cf. (15)). Here f
(k j)
j ∈ H

⊗̂k j

τ,C , j ∈ {1, . . . , m}, are the kernels from decompositions (9) for fj;

f (k) ∈ H⊗̂k
τ,C and g(n−k) ∈ H⊗̂n−k

τ,C are the kernels from the same decompositions for f and g,

respectively.

Note that formula (17) can be used as an alternative definition of the Wick product.

Further, it is clear that in order to give an informal sense to a notion “the Wick product”

(this is necessary for the construction of a meaningful theory), we have to study a question

about convergence of series (17) in the spaces (Hτ).

Theorem 2. Let f1, . . . , fm ∈ (Hτ). Then f1� · · ·� fm ∈ (Hτ). Moreover, the Wick multiplica-

tion is continuous in the sense that for any q ∈ Z+ we have

‖ f1� · · ·� fm‖(Hτ)q
≤

√
max
n∈Z+

[2−n(n + 1)m−1] ‖ f1‖(Hτ)q1
· · · ‖ fm‖(Hτ)q1

, (19)

where q1 ≥ q + 2 log2 m + 1.
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Proof. It is clear that it is sufficient to establish estimate (19). One can make this by direct

calculation by using (9), (17), (10) and the estimate
∣∣ f

(k1)
1 ⊗̂ · · · ⊗̂ f

(km)
m

∣∣
τ
≤

∣∣ f
(k1)
1

∣∣
τ
· · · · ·

∣∣ f
(km)
m

∣∣
τ
,

which follows from the definition of the symmetric tensor multiplication, by analogy with the

proof of Theorem 2.1 in [21].

Remark 6. In the case m = 2 estimate (19) reduces to

‖ f1� f2‖(Hτ)q
≤ ‖ f1‖(Hτ)q1

‖ f2‖(Hτ)q1
, (20)

q1 ≥ q + 3. Using this result and the associativity of the Wick multiplication, one can prove by

the mathematical induction method that for f1, . . . , fm ∈ (Hτ) and any q ∈ Z+ we get

‖ f1� · · ·� fm‖(Hτ)q
≤ ‖ f1‖(Hτ)q1

‖ f2‖(Hτ)q2
· · · ‖ fm−1‖(Hτ)qm−1

‖ fm‖(Hτ)qm−1
,

where ql ≥ ql−1 + 3, l ∈ {1, . . . , m − 1}, q0 := q (cf. [25, Remark 7]).

Finally, we note that by analogy with the regular case [25] (see also [21]) one can introduce

so-called Wick versions of holomorphic functions on (Hτ). Namely, let f ∈ (Hτ) and h : C → C

be a holomorphic at (Ŝ f )(0) function. We define a Wick version of h as

h�( f ) := Ŝ−1h
(
Ŝ f

)
.

It is not difficult to verify that h� can be presented in the form

h�( f ) =
∞

∑
n=0

hn
(

f −
(
Ŝ f

)
(0)

)�n
, (21)

where f�n := f� · · ·� f︸ ︷︷ ︸
n times

, f�0 := 1, hn ∈ C are the coefficients from the Taylor decomposition

h(u) =
∞

∑
n=0

hn

(
u −

(
Ŝ f

)
(0)

)n
(22)

(cf. [25]). It follows from Theorem 2 and (21), that for a polynomial h and a test function f ∈ (Hτ)

we have h�( f ) ∈ (Hτ). But, unfortunately, in a general case for f ∈ (Hτ) and a holomor-

phic at
(
Ŝ f

)
(0) function h : C → C h�( f ) may not belong to (Hτ) (however, one can prove

that h�( f ) ∈ (Hτ) if f ∈ (Hτ) is a polynomial, i.e. decomposition (9) for f contains only a

finite number of nonzero terms, and coefficients hn from decomposition (22) for h tend to

zero quickly enough as n → ∞). Actually, properties of Wick versions of holomorphic func-

tions on the spaces of test functions are quite similar in the nonregular and regular cases. So,

the interested reader can find more information in [25] (see also [21]), here we only note that

the spaces (Hτ) correspond to the space of regular test functions with the parameter β = 1

(cf. Remark 3), in this case Wick versions of holomorphic functions, unfortunately, have, in a

sense, the worst properties.

3 The relationship between Wick multiplication and integration

3.1 Generalized stochastic integral

Denote by
∫
◦(u)d̂Lu the extended stochastic integral on

(
L2
)
⊗HC with respect to a Lévy

process L [23]. As it has been stated above (see Remark 4), this integral cannot be naturally
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restricted to the spaces of nonregular test functions: for f ∈ (Hτ) ⊗Hτ,C ⊂
(

L2
)
⊗HC the

integral
∫

f (u)d̂Lu is not necessary a nonregular test function. One can show that for any

τ ∈ T and q ∈ Z+ such that q > log2 c(τ), where c(τ) > 0 is described in Proposition 1,

if f ∈ (Hτ)q ⊗ Hτ,C then
∫

f (u)d̂Lu ∈
(

L2
)
; and for q sufficiently large, in particular,

if f ∈ (Hτ) ⊗Hτ,C, this integral is a regular test function. Nevertheless, it is possible to in-

troduce on the spaces of nonregular test functions a linear operator that has properties quite

analogous to the properties of the extended stochastic integral. Now we recall the construction

of such an operator, which will be called a generalized stochastic integral, following [27].

Let I : (Hτ)q →
∞
⊕

n=0
(n!)2 2qnH⊗̂n

τ,C be the generalized Wiener-Itô-Sigal isometrical isomor-

phism, generated by decomposition (9)
(
see also (10)

)
, 1 : Hτ,C → Hτ,C be the identity opera-

tor. For each f
(n)
· ∈ H⊗̂n

τ,C ⊗Hτ,C, n ∈ Z+, we define a Wick monomial by

:
〈
◦⊗n, f

(n)
·

〉
:

de f
= (I ⊗ 1)−1


0, . . . , 0︸ ︷︷ ︸

n

, f
(n)
· , 0, . . .


 ∈ (Hτ)q ⊗Hτ,C. (23)

By analogy with the regular case [14], it is easy to prove that such Wick monomials form

orthogonal bases in the spaces (Hτ)q ⊗Hτ,C in the sense that any f ∈ (Hτ)q ⊗Hτ,C can be

uniquely presented as

f (·) =
∞

∑
n=0

:
〈
◦⊗n, f

(n)
·

〉
:, f

(n)
· ∈ H⊗̂n

τ,C ⊗Hτ,C, (24)

where the series converges in (Hτ)q ⊗Hτ,C, with

‖ f‖2
(Hτ)q⊗Hτ,C

=
∞

∑
n=0

(n!)2 2qn
∣∣∣ f

(n)
·

∣∣∣
2

H⊗̂n
τ,C⊗Hτ,C

< ∞. (25)

Definition 4. We define a generalized stochastic integral
∫

◦(u)d̃Lu : (Hτ)q+1 ⊗Hτ,C → (Hτ)q

as a linear continuous operator given for f ∈ (Hτ)q+1 ⊗Hτ,C by the formula

∫
f (u)d̃Lu :=

∞

∑
n=0

:
〈
◦⊗n+1, f̂ (n)

〉
:, (26)

where f̂ (n) := Pr f
(n)
· ∈ H⊗̂n+1

τ,C are the orthoprojections onto H⊗̂n+1
τ,C , i.e. the symmetrizations

by all variables, of the kernels f
(n)
· ∈ H⊗̂n

τ,C ⊗Hτ,C from decomposition (24) for f .

By (26), (10), the obvious estimate
∣∣ f̂ (n)

∣∣
H⊗̂n+1

τ,C
≤

∣∣ f
(n)
·

∣∣
H⊗̂n

τ,C⊗Hτ,C
and (25), we get

∥∥∥∥
∫

f (u)d̃Lu

∥∥∥∥
2

(Hτ)q

=
∞

∑
n=0

(
(n + 1)!

)2
2q(n+1)

∣∣∣ f̂ (n)
∣∣∣
2

H⊗̂n+1
τ,C

≤ 2q
∞

∑
n=0

(n!)22(q+1)n
[
(n + 1)22−n

] ∣∣∣ f
(n)
·

∣∣∣
2

H⊗̂n
τ,C⊗Hτ,C

≤ 9 · 2q−2‖ f‖2
(Hτ)q+1⊗Hτ,C

,

so this definition is well-posed. It is clear that the restriction of the operator
∫
◦(u)d̃Lu to the

space (Hτ)⊗Hτ,C is a linear continuous operator acting from (Hτ)⊗Hτ,C to (Hτ).
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3.2 Wick multiplication under the sign of the generalized stochastic integral

As is known, some properties of stochastic integrals are quite unusual. In particular, for

f ∈
(

L2
)

and h(1) ∈ HC such that f ⊗ h(1) is integrable with respect to a Lévy process L in the

extended sense we have
∫ (

f ⊗ h(1)
)
(u)d̂Lu ≡

∫
f · h(1)(u)d̂Lu 6= f ·

∫
h(1)(u)d̂Lu,

generally speaking, although f does not depend on u. Moreover, in general, the product

f ·
∫

h(1)(u)d̂Lu is undefined. This property of the extended stochastic integral holds true if f

is a regular test or generalized function, or a nonregular generalized function. But if one uses

the Wick multiplication instead of the pointwise multiplication, it becomes possible to take a

time-independent, i.e. independent on u, multiplier out of the sign of the extended stochastic

integral, as in the Lebesgue integration theory. The same can be said about the generalized

stochastic integral, now we will explain this in detail.

Let us begin with a preparation. We need to introduce a Wick product for elements of (Hτ)

and (Hτ)⊗Hτ,C. Let n, m ∈ Z+, f (n) ∈ H⊗̂n
τ,C, g

(m)
· ∈ H⊗̂m

τ,C ⊗Hτ,C. We put

f (n)⊗g
(m)
· := (Pr ⊗ 1)

(
f (n) ⊗ g

(m)
·

)
∈ H⊗̂n+m

τ,C ⊗Hτ,C, (27)

where Pr ⊗ 1 is the orthoprojector acting from H⊗̂n
τ,C ⊗H⊗̂m

τ,C ⊗Hτ,C to H⊗̂n+m
τ,C ⊗Hτ,C or, which

is the same, the operator of symmetrization by n + m variables, except for the variable “·”

(of course, this operator depends on n and m, but we simplify the nonation). Clearly that

∣∣ f (n)⊗g
(m)
·

∣∣
H⊗̂n+m

τ,C ⊗Hτ,C
≤

∣∣ f (n)
∣∣
H⊗̂n

τ,C

∣∣g(m)
·

∣∣
H⊗̂m

τ,C⊗Hτ,C
, (28)

and for f (n) ∈ H⊗̂n
τ,C, g(m) ∈ H⊗̂m

τ,C and h(1) ∈ Hτ,C we have

f (n)⊗
(

g(m) ⊗ h(1)
)
=

(
f (n)⊗̂g(m)

)
⊗ h(1) ∈ H⊗̂n+m

τ,C ⊗Hτ,C. (29)

Now we can accept the following definition based on “coordinate formula” (18).

Definition 5. Let f ∈ (Hτ), g ∈ (Hτ)⊗Hτ,C. We define a Wick product f�g ∈ (Hτ)⊗Hτ,C,

setting
(

f�g
)
(·) :=

∞

∑
n=0

:
〈
◦⊗n,

n

∑
k=0

f (k)⊗g
(n−k)
·

〉
:, (30)

where f (k) ∈ H⊗̂k
τ,C and g

(n−k)
· ∈ H⊗̂n−k

τ,C ⊗Hτ,C are the kernels from decompositions (9) and

(24) for f and g, respectively.

Using estimate (28), one can prove by analogy with [21], that this definition is well-posed

and the Wick multiplication� is continuous in the sense that for all f ∈ (Hτ), g ∈ (Hτ)⊗Hτ,C

and q, q1 ∈ Z+ such that q1 ≥ q + 3 we have
∥∥ f�g

∥∥
(Hτ)q⊗Hτ,C

≤ ‖ f‖(Hτ)q1
‖g‖(Hτ)q1

⊗Hτ,C

(
cf. (20)

)
.

Remark 7. Let f , g ∈ (Hτ), h(1) ∈ Hτ,C. Using (30), (29) and (18), one can show that

f�
(

g ⊗ h(1)
)
= ( f�g) ⊗ h(1) ∈ (Hτ)⊗Hτ,C. (31)
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Theorem 3. Let f ∈ (Hτ) and g ∈ (Hτ)⊗Hτ,C. Then
∫ (

f�g
)
(u)d̃Lu = f�

∫
g(u)d̃Lu ∈ (Hτ) . (32)

Proof. First, we note that the expressions in the left hand side and in the right hand side of (32)

belong to (Hτ), this follows from the properties of the generalized stochastic integral and of the

Wick multiplications � and �. Now, let us prove equality (32). We begin from the special case

f = :
〈
◦⊗n, f (n)

〉
:, g(·) = :

〈
◦⊗m, g

(m)
·

〉
:, f (n) ∈ H⊗̂n

τ,C, g
(m)
· ∈ H⊗̂m

τ,C ⊗Hτ,C, n, m ∈ Z+. By (30),

we have
(

f�g
)
(·) = :

〈
◦⊗n+m, f (n)⊗g

(m)
·

〉
:, hence

∫ (
f�g

)
(u)d̃Lu = :

〈
◦⊗n+m+1,

̂
f (n)⊗g

(m)
·

〉
:

(
see (26)

)
. On the other hand, by (26) we have

∫
g(u)d̃Lu = :

〈
◦⊗m+1, ĝ(m)

〉
:, therefore

by (18) we obtain f�
∫

g(u)d̃Lu = :
〈
◦⊗n+m+1, f (n)⊗̂ĝ(m)

〉
:. So, we have to prove that

̂
f (n)⊗g

(m)
· = f (n)⊗̂ĝ(m) in H⊗̂n+m+1

τ,C . But this follows from the properties of orthoprojectors

(it does not matter in which order to symmetrize functions). Thus, in our special case the

statement of the theorem is proved. In the general case, equality (32) follows from the just

proved result, continuity of the Wick multiplications � and �, and continuity of the genera-

lized stochastic integral.

Remark 8. One can interpret g as a function on R+ with values in (Hτ) and, taking into ac-

count the construction of the Wick multiplications � and �, rewrite equality (32) in a classical

form
∫

f�g(u)d̃Lu = f�
∫

g(u)d̃Lu.

3.3 Wick multiplication under the sign of a Pettis integral

As in the regular case [25], let us obtain an analog of property (32) for a Pettis integral (a

weak integral) on the spaces of nonregular test functions.

First, we consider the Pettis integral over a set of finite Lebesgue measure ρ.

Definition 6. For all ∆ ∈ B (R+) with ρ(∆) < ∞ and g ∈ (Hτ)⊗HC we define a Pettis integral∫
∆

g(u)du ∈ (Hτ) as a unique element of (Hτ) such that for each F ∈ (H−τ) we have
〈〈

F,
∫

∆
g(u)du

〉〉

(L2)

= 〈〈F ⊗ 1∆, g〉〉(L2)⊗HC
. (33)

By the generalized Cauchy-Bunyakovsky inequality, for any q ∈ Nq0(τ) (see Proposition 2)

such that F ∈ (H−τ)−q we have

∣∣∣〈〈F ⊗ 1∆, g〉〉(L2)⊗HC

∣∣∣ ≤ ‖F‖(H−τ)−q

√
ρ(∆)‖g‖(Hτ)q⊗HC

,

therefore this definition is well-posed and a Pettis integral
∫

∆
◦(u)du : (Hτ)⊗HC → (Hτ) (34)

is a linear continuous operator.

Let us show that
∫

∆

(
f ⊗ h(1)

)
(u)du ≡

∫

∆
f · h(1)(u)du = f ·

∫

∆
h(1)(u)du (35)

for arbitrary f ∈ (Hτ) and h(1) ∈ HC.
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Indeed, for each F ∈ (H−τ) by (33) we have
〈〈

F,
∫

∆
f · h(1)(u)du

〉〉

(L2)

=
〈〈

F ⊗ 1∆, f ⊗ h(1)
〉〉

(L2)⊗HC

= 〈〈F, f 〉〉(L2)

∫

∆
h(1)(u)du =

〈〈
F, f ·

∫

∆
h(1)(u)du

〉〉

(L2)

.

Further, let f ∈ (Hτ), g ∈ (Hτ) ⊗ HC. One can show as in Subsection 3.1 that g can

be decomposed in series (24) with kernels g
(n)
· ∈ H⊗̂n

τ,C ⊗ HC and Wick monomials defined

by formula (23) with the identity operator 1 : HC → HC. Define a Wick product

f�g ∈ (Hτ) ⊗ HC by formula (30) (it is clear that now in the definition of the tensor mul-

tiplication ⊗ (27) an operator Pr ⊗ 1 is the orthoprojector acting from H⊗̂n
τ,C ⊗ H⊗̂m

τ,C ⊗HC to

H⊗̂n+m
τ,C ⊗ HC). Since, obviously, this multiplication is a natural extension of multiplication

(30) (so we keep for it the designation �), everything said above about multiplication (30)

holds true up to obvious modifications.

Let now f , g ∈ (Hτ) and h(1) ∈ HC. Using equalities (31) and (35) we obtain
∫

∆

(
f�

(
g ⊗ h(1)

))
(u)du =

∫

∆

((
f�g

)
⊗ h(1)

)
(u)du ≡

∫

∆

(
f�g

)
· h(1)(u)du

=
(

f�g
)
·
∫

∆
h(1)(u)du = f�

(
g ·

∫

∆
h(1)(u)du

)

= f�
∫

∆
g · h(1)(u)du ≡ f�

∫

∆

(
g ⊗ h(1)

)
(u)du.

Hence, by virtue of continuity of the Wick multiplications � and �, and continuity of Pettis

integral (34), we obtain the following statement (cf. Theorem 3).

Theorem 4. Let ∆ ∈ B (R+) be such that ρ(∆) < ∞, f ∈ (Hτ) and g ∈ (Hτ)⊗HC. Then
∫

∆

(
f�g

)
(u)du = f�

∫

∆
g(u)du ∈ (Hτ) . (36)

Note that, as in the case of the generalized stochastic integral, one can interpret g as a func-

tion acting from R+ to (Hτ), and rewrite (36) in a classical form
∫

∆
f�g(u)du = f�

∫
∆

g(u)du.

Now, we consider a Pettis integral over a set of infinite Lebesgue measure.

Definition 7 (cf. Definition 6). Let ∆ ∈ B (R+) be such that ρ(∆) = ∞, and g ∈ (Hτ)⊗HC

satisfy the condition

∀q ∈ Nq0(τ)

∫

∆

∥∥g(u)
∥∥
(Hτ)q

du < ∞ (37)
(
here we interpret g as a function acting from R+ to (Hτ)

)
.

Define a Pettis integral
∫

∆
g(u)du ∈ (Hτ) as a unique element of (Hτ) such that for each

F ∈ (H−τ) equality (33) is fulfilled.

The well-posedness of this definition follows from the estimate
(
see (33)

)

∣∣∣〈〈F ⊗ 1∆, g〉〉(L2)⊗HC

∣∣∣ =
∣∣∣∣
∫

∆

〈〈
F, g(u)

〉〉
(L2)

du

∣∣∣∣ ≤
∫

∆

∣∣∣
〈〈

F, g(u)
〉〉

(L2)

∣∣∣ du

≤ ‖F‖(H−τ)−q

∫

∆

∥∥g(u)
∥∥
(Hτ)q

du
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(here we used the generalized Cauchy-Bunyakovsky inequality), where q ∈ Nq0(τ) is such that

F ∈ (H−τ)−q.

By approximation the Pettis integral over a set of infinite Lebesgue measure by Pettis inte-

grals over sets of finite Lebesgue measure, quite analogously to the regular case [25] one can

prove the following statement (cf. Theorem 4).

Theorem 5. Let ∆ ∈ B (R+) be such that ρ(∆) = ∞, f ∈ (Hτ) and g ∈ (Hτ) ⊗HC satisfy

condition (37). Then representation (36) is fulfilled.

Remark 9. Since Hτ,C ⊂ HC, then, of course, it is possible to consider the Pettis integral on the

spaces (Hτ)⊗Hτ,C ⊂ (Hτ)⊗HC. It is clear that all the above statements hold true for this

integral.

3.4 Representation of the generalized stochastic integral via the Pettis integral

As is known, in different versions of the infinite-dimensional white noise analysis an ex-

tended stochastic integral can be presented as a Pettis integral from a Wick product of the

original integrand by the corresponding white noise. In particular, in the Lévy analysis this

representation has the form ∫
f (u)d̂Lu =

∫
f (u)♦L̇udu, (38)

where L̇ is a Lévy white noise. Depending on spaces in which integration is considered,

equality (38) can be formal (e.g., on the spaces of regular test and generalized functions, see [25]

and [13], respectively) or can have a rigorous sense (e.g., on the spaces of nonregular gener-

alized functions, see [29]). In any case this equality is very useful for applications. Note that,

in a sense, representation (38) is an analog of a formula for replacement of a measure in the

Lebesgue integration theory (in particular, L̇ is an analog of a Radon-Nikodym derivative).

Let us obtain a natural analog of representation (38) for the generalized stochastic integral.

As noted in Subsection 1.1, a Lévy white noise L̇ can be presented as L̇u(◦) = 〈◦, δu〉, where

δu is the Dirac delta-function, concentrated at u. Since for each u ∈ R+ (and for each τ ∈ T)

δu ∈ H−τ,C, for each q ∈ Nq0(τ) (see Proposition 2) 〈◦, δu〉 = :
〈
◦, δu

〉
: ∈ (H−τ)−q, i.e. the Lévy

white noise can be considered as a function on R+ with values in a space of nonregular gen-

eralized functions (so, as noted above, in the analysis on the spaces of nonregular generalized

functions representation (38) has a rigorous sense). At the same time δu 6∈ Hτ,C, τ ∈ T, there-

fore L̇u is not a nonregular test function and, as in the regular case, the analog of representation

(38) in the analysis on the spaces of nonregular test functions turns out to be a formal.

Theorem 6. For arbitrary f ∈ (Hτ)⊗Hτ,C the generalized stochastic integral
∫

f (u)d̃Lu can

be formally presented as
∫

f (u)d̃Lu =
∫

f (u)�L̇udu ≡
∫

f (u)� 〈◦, δu〉 du ∈ (Hτ) , (39)

where the integral in the right hand side is a formal Pettis integral over the set R+.

Remark 10. It is clear that in the right hand side of (39) f is interpreted as a function on R+

with valuses in (Hτ)
(
a similar remark is true for representation (38)

)
.
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Proof. Let f ∈ (Hτ)⊗Hτ,C. Using (formally) (18), we obtain
∫

f (u)�L̇udu ≡
∫

f (u)� 〈◦, δu〉 du =
∫

f (u)�:
〈
◦, δu

〉
:du

=
∫ ∞

∑
n=0

:
〈
◦⊗n+1, f

(n)
u ⊗̂δu

〉
:du =

∞

∑
n=0

:
〈
◦⊗n+1,

∫
f
(n)
u ⊗̂δudu

〉
:.

But

f
(n)
u ⊗̂δu =

1

n+1

(
f
(n)
u (·1, . . . , ·n)δu(·) + f

(n)
u (·2, . . . , ·n, ·)δu(·1) + · · ·+ f

(n)
u (·, ·1, . . . , ·n−1)δu(·n)

)
,

hence
∫

f
(n)
u ⊗̂δudu =

1

n + 1

(
f
(n)
· (·1, . . . , ·n) + f

(n)
·1 (·2, . . . , ·n, ·) + · · ·+ f

(n)
·n (·, ·1, . . . , ·n−1)

)

= Pr f
(n)
· = f̂ (n),

and therefore
∫

f (u)�L̇udu =
∞

∑
n=0

:
〈
◦⊗n+1, f̂ (n)

〉
: =

∫
f (u)d̃Lu (see Definition 4).

4 The relationship between Wick multiplication and stochastic differenti-

ation

4.1 Operators of stochastic differentiation

In different versions of the white noise analysis one can introduce and study so-called oper-

ators of stochastic differentiation on spaces of test and generalized functions. These operators

are closely related with stochastic integrals and derivatives, and can be used, in particular, in

order to study properties of stochastic integrals and properties of solutions of certain stochas-

tic equations. In this subsection, we recall the definition of the mentioned operators on the

spaces of nonregular test functions, following [28].

Let us start with the necessary preparation. Consider a family of chains

D′
C

⊗̂n
⊃ H⊗̂n

−τ,C ⊃ H⊗̂n
C

≡ L2 (R+)
⊗̂n
C

⊃ H⊗̂n
τ,C ⊃ D⊗̂n

C
, n ∈ Z+ (40)

(as is known, H⊗̂n
−τ,C and D′

C

⊗̂n = ind lim
τ̃∈T

H⊗̂n
−τ̃,C are the spaces dual of H⊗̂n

τ,C and D⊗̂n
C

with

respect to H⊗̂n
C

; in the case n = 0 all spaces from chain (40) are equal to C). Since the spaces of

test functions in chains (40) and (12) coincide, there exists a family of natural isomorphisms

Un : D′
C

(n)
→ D′

C

⊗̂n

such that for all F
(n)
ext ∈ D′

C

(n) and f (n) ∈ D⊗̂n
C

we have
〈

F
(n)
ext , f (n)

〉
ext

=
〈

UnF
(n)
ext , f (n)

〉
. (41)

It is easy to verify that the restrictions of Un to H
(n)
−τ,C are isometric isomorphisms between the

spaces H
(n)
−τ,C and H⊗̂n

−τ,C.

Remark 11. Remind that H
(1)
ext = HC, therefore in the case n = 1 chains (40) and (12) coincide.

Hence U1 is the identity operator on D′
C

(1) = D′
C

. In the case n = 0, U0 is, obviously, the

identity operator on C.
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Now we can define a natural analog of the symmetric tensor multiplication on the negative

spaces of chains (12). Let F
(n)
ext ∈ H

(n)
−τ,C, G

(m)
ext ∈ H

(m)
−τ,C, n, m ∈ Z+. We put

F
(n)
ext ⋄ G

(m)
ext := U−1

n+m

[ (
UnF

(n)
ext

)
⊗̂
(

UmG
(m)
ext

) ]
∈ H

(n+m)
−τ,C (42)

(
recall (15)

)
. It is easy to verify that a multiplication ⋄ is commutative, associative and dis-

tributive; for any α ∈ C we have
(

αF
(n)
ext

)
⋄ G

(m)
ext = F

(n)
ext ⋄

(
αG

(m)
ext

)
= α

(
F
(n)
ext ⋄ G

(m)
ext

)
≡ αF

(n)
ext ⋄ G

(m)
ext ,

and ∣∣∣F(n)
ext ) ⋄ G

(m)
ext

∣∣∣
H

(n+m)
−τ,C

≤
∣∣∣F(n)

ext )
∣∣∣
H

(n)
−τ,C

∣∣∣G(m)
ext

∣∣∣
H

(m)
−τ,C

, (43)

see [28] for more details.

Let now F
(n)
ext ∈ H

(n)
−τ,C, f (m) ∈ H⊗̂m

τ,C , n ∈ Z+, m ∈ N, m > n. We define a generalized

partial pairing
〈

F
(n)
ext , f (m)

〉
ext

∈ H⊗̂m−n
τ,C by setting

〈
G
(m−n)
ext ,

〈
F
(n)
ext , f (m)

〉
ext

〉

ext

=
〈

F
(n)
ext ⋄ G

(m−n)
ext , f (m)

〉
ext

(44)

for any G
(m−n)
ext ∈ H

(m−n)
−τ,C . By the generalized Cauchy-Bunyakovsky inequality and (43), we get

∣∣∣∣
〈

F
(n)
ext ⋄ G

(m−n)
ext , f (m)

〉
ext

∣∣∣∣ ≤
∣∣∣F(n)

ext ⋄ G
(m−n)
ext

∣∣∣
H

(m)
−τ,C

∣∣∣ f (m)
∣∣∣
H⊗̂m

τ,C

≤
∣∣∣F(n)

ext

∣∣∣
H

(n)
−τ,C

∣∣∣G(m−n)
ext

∣∣∣
H

(m−n)
−τ,C

∣∣∣ f (m)
∣∣∣
H⊗̂m

τ,C

,

which implies that this definition is well-posed and
∣∣∣∣
〈

F
(n)
ext , f (m)

〉
ext

∣∣∣∣
H⊗̂m−n

τ,C

≤
∣∣∣F(n)

ext

∣∣∣
H

(n)
−τ,C

∣∣∣ f (m)
∣∣∣
H⊗̂m

τ,C

. (45)

Remark 12. We recall that in the case m = n ∈ Z+ the pairings
〈

F
(n)
ext , f (n)

〉
ext

are defined in

Subsection 1.3 as the real dual pairings between elements of negative and positive spaces from

chains (12), now estimate (45) holds true because it is nothing but the generalized Cauchy-

Bunyakovsky inequality.

Definition 8. Let n ∈ N and F
(n)
ext ∈ H

(n)
−τ,C. Let us define a linear continuous operator

(Dn◦)
(

F
(n)
ext

)
: (Hτ)q → (Hτ)q by setting

(Dn f )
(

F
(n)
ext

)
:=

∞

∑
m=n

m!

(m − n)!
:

〈
◦⊗m−n,

〈
F
(n)
ext , f (m)

〉
ext

〉
:, f ∈ (Hτ)q , (46)

where f (m) ∈ H⊗̂m
τ,C are the kernels from decomposition (9) for f .

Using estimate (45) one can show that this definition is well-posed. Сlearly that the restric-

tion of the operator (Dn◦)
(

F
(n)
ext

)
to the space (Hτ) is a linear continuous operator on (Hτ).

The interested reader can find more information about operators of stochastic differentiation

on the spaces of nonregular test functions in [28].
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4.2 The Leibnitz rule

One of the important properties of the operators of stochastic differentiation in the Lévy

analysis (as well as in other versions of the white noise analysis) is that the operator of stochas-

tic differentiation of first order is a differentiation, i.e. satisfies the Leibnitz rule, with respect

to the Wick multiplication. For the above operator on the spaces of regular test and generalized

functions this fact is established in [25] and [12], respectively, on the spaces of nonregular gen-

eralized functions — in [26]. Now our goal is to obtain the corresponding result on the spaces

of nonregular test functions (Hτ).

Let F
(1)
ext ≡ F(1) ∈ H

(1)
−τ,C = H−τ,C. Denote (D◦)

(
F(1)

)
:=

(
D1◦

) (
F(1)

)
. For arbitrary

f ∈ (Hτ) according to (46) we obtain

(D f )
(

F(1)
)
=

∞

∑
m=1

m:

〈
◦⊗m−1,

〈
F(1), f (m)

〉
ext

〉
:, (47)

where f (m) ∈ H⊗̂m
τ,C are the kernels from decomposition (9) for f .

Theorem 7. The operator of stochastic differentiation of first order on (Hτ) is a differenti-

ation, i.e. satisfies the Leibnitz rule, with respect to the Wick multiplication, that is for all

f , g ∈ (Hτ) and F(1) ∈ H−τ,C we have
(

D ( f�g)
) (

F(1)
)
= (D f )

(
F(1)

)
�g + f�(Dg)

(
F(1)

)
∈ (Hτ) . (48)

Remark 13. Since, in contrast to the regular case, the constructions of the Wick product (as well

as of the operators of stochastic differentiation) on the spaces (H−τ) and (Hτ) are different,

we cannot use the corresponding result from [26] and have to prove (48) directly.

Proof. First we note that the expressions in the left hand side and in the right hand side of

(48) belong to (Hτ), this follows from the properties of the operator D and Theorem 2. Now,

let us prove equality (48). Note, that if f = :
〈
◦⊗0, f (0)

〉
: = f (0) ∈ C or g = :

〈
◦⊗0, g(0)

〉
: =

g(0) ∈ C, then equality (48) trivially holds. We begin from the special case f = :
〈
◦⊗n, f (n)

〉
:,

g = :
〈
◦⊗m, g(m)

〉
:, f (n) ∈ H⊗̂n

τ,C, g(m) ∈ H⊗̂m
τ,C , n, m ∈ N . Let F(1) be an arbitrary element of

H−τ,C. By (18) and (47) we obtain

f�g = :
〈
◦⊗n+m, f (n)⊗̂g(m)

〉
:,

(
D ( f�g)

) (
F(1)

)
= (n + m):

〈
◦⊗n+m−1,

〈
F(1), f (n)⊗̂g(m)

〉
ext

〉
:,

(D f )
(

F(1)
)
= n:

〈
◦⊗n−1,

〈
F(1), f (n)

〉
ext

〉
:, (D f )

(
F(1)

)
�g = n:

〈
◦⊗n+m−1,

〈
F(1), f (n)

〉
ext

⊗̂g(m)

〉
:,

(Dg)
(

F(1)
)
= m:

〈
◦⊗m−1,

〈
F(1), g(m)

〉
ext

〉
:, f�(Dg)

(
F(1)

)
= m:

〈
◦⊗n+m−1, f (n)⊗̂

〈
F(1), g(m)

〉
ext

〉
:.

So, we have to prove that

(n + m)
〈

F(1), f (n)⊗̂g(m)
〉

ext
= n

〈
F(1), f (n)

〉
ext

⊗̂g(m) + m f (n)⊗̂
〈

F(1), g(m)
〉

ext
. (49)

Since the set
{

G⊗n+m−1 : G ∈ H−τ,C

}
is total in the space H⊗̂n+m−1

−τ,C , in order to prove (49) it is

sufficient to prove that for each G ∈ H−τ,C we have

(n + m)

〈
G⊗n+m−1,

〈
F(1), f (n)⊗̂g(m)

〉
ext

〉
= n

〈
G⊗n+m−1,

〈
F(1), f (n)

〉
ext

⊗̂g(m)

〉

+ m

〈
G⊗n+m−1, f (n)⊗̂

〈
F(1), g(m)

〉
ext

〉
.

(50)
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Using (41), (42), (44) and considering that U1 = 1 (see Remark 11), we obtain

(n + m)

〈
G⊗n+m−1,

〈
F(1), f (n)⊗̂g(m)

〉
ext

〉
= (n + m)

〈
U−1

n+m−1G⊗n+m−1,
〈

F(1), f (n)⊗̂g(m)
〉

ext

〉

ext

= (n + m)

〈
F(1) ⋄

(
U−1

n+m−1G⊗n+m−1
)

, f (n)⊗̂g(m)

〉

ext

= (n + m)

〈
U−1

n+m

[
F(1)⊗̂G⊗n+m−1

]
, f (n)⊗̂g(m)

〉

ext

= (n + m)
〈

F(1)⊗̂G⊗n+m−1, f (n)⊗̂g(m)
〉

,

(51)

n

〈
G⊗n+m−1,

〈
F(1), f (n)

〉
ext

⊗̂g(m)

〉

= n

〈
G⊗n+m−1,

〈
F(1), f (n)

〉
ext

⊗ g(m)

〉
= n

〈
G⊗n−1,

〈
F(1), f (n)

〉
ext

〉〈
G⊗m, g(m)

〉

= n

〈
U−1

n−1G⊗n−1,
〈

F(1), f (n)
〉

ext

〉

ext

〈
G⊗m, g(m)

〉

= n

〈
F(1) ⋄

(
U−1

n−1G⊗n−1
)

, f (n)

〉

ext

〈
G⊗m, g(m)

〉

= n

〈
U−1

n

[
F(1)⊗̂G⊗n−1

]
, f (n)

〉

ext

〈
G⊗m, g(m)

〉
= n

〈
F(1)⊗̂G⊗n−1, f (n)

〉 〈
G⊗m, g(m)

〉

=
〈

F(1) (·1) G (·2) · · · G (·n) + F(1) (·2) G (·3) · · · G (·n) G (·1)

+ · · ·+ F(1) (·n) G (·1) · · · G (·n−1) , f (n) (·1, . . . , ·n)
〉 〈

G⊗m, g(m)
〉

=
〈

F(1)(·1)G(·2)· · ·G(·n)G(·n+1)· · ·G(·n+m)+F(1)(·2)G(·3)· · ·G(·n)G(·1)G(·n+1)· · ·G(·n+m)

+· · ·+ F(1)(·n)G(·1) · · · G(·n−1)G(·n+1) · · · G(·n+m), f (n)(·1, . . . , ·n)g(m)(·n+1, . . . , ·n+m)
〉

,

m

〈
G⊗n+m−1, f (n)⊗̂

〈
F(1), g(m)

〉
ext

〉
= m

〈
G⊗n+m−1, f (n) ⊗

〈
F(1), g(m)

〉
ext

〉

= m
〈

G⊗n, f (n)
〉〈

G⊗m−1,
〈

F(1), g(m)
〉

ext

〉

= m
〈

G⊗n, f (n)
〉〈

U−1
m−1G⊗m−1,

〈
F(1), g(m)

〉
ext

〉

ext

= m
〈

G⊗n, f (n)
〉〈

F(1) ⋄
(

U−1
m−1G⊗m−1

)
, g(m)

〉

ext

= m
〈

G⊗n, f (n)
〉〈

U−1
m

[
F(1)⊗̂G⊗m−1

]
, g(m)

〉

ext

= m
〈

G⊗n, f (n)
〉 〈

F(1)⊗̂G⊗m−1, g(m)
〉

=
〈

G⊗n, f (n)
〉〈

F(1)(·n+1)G(·n+2) · · · G(·n+m) + F(1)(·n+2)G(·n+3) · · · G(·n+m)G(·n+1)

+ · · ·+ F(1)(·n+m)G(·n+1) · · · G(·n+m−1), g(m)(·n+1, . . . , ·n+m)
〉

=

〈
G(·1) · · · G(·n)F(1)(·n+1)G(·n+2) · · · G(·n+m)

+ G(·1) · · · G(·n)F(1)(·n+2)G(·n+3) · · · G(·n+m)G(·n+1)

+· · ·+ G(·1)· · · G(·n)F(1)(·n+m)G(·n+1)· · ·G(·n+m−1), f (n)(·1, . . . , ·n)g(m)(·n+1, . . . , ·n+m)

〉
,
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therefore

n

〈
G⊗n+m−1,

〈
F(1), f (n)

〉
ext

⊗̂g(m)

〉
+ m

〈
G⊗n+m−1, f (n)⊗̂

〈
F(1), g(m)

〉
ext

〉

=

〈
F(1) (·1) G (·2) · · · · · G (·n+m) + F(1) (·2) G (·3) · · · · · G (·n+m) G (·1)

+ · · ·+ F(1) (·n+m) G (·1) · · · · · G (·n+m−1) , f (n) (·1, . . . , ·n) g(m) (·n+1, . . . , ·n+m)

〉

= (n + m)
〈

F(1)⊗̂G⊗n+m−1, f (n) ⊗ g(m)
〉
= (n + m)

〈
F(1)⊗̂G⊗n+m−1, f (n)⊗̂g(m)

〉
,

whence, by virtue of (51), equality (50) follows. Thus, in our special case equality (48) is proved.

In the general case, (48) follows from this result and from linearity and continuity of the oper-

ator of stochastic differentiation and of the Wick multiplication on (Hτ).

Remark 14. Let f ∈ (Hτ) and h : C → C be a holomorphic at
(
Ŝ f

)
(0) function such that

its Wick version h�( f ) belongs to (Hτ) (recall Section 2). It can be proved that in this case

h′�( f ) ∈ (Hτ) and the following corollary of Theorem 7 is true: for any F(1) ∈ H−τ,C we have

(
Dh�( f )

)(
F(1)

)
= h′

�
( f )�(D f )

(
F(1)

)
∈ (Hτ) ,

here and above h′�( f ) is the Wick version of the usual derivative of a function h.

Finally, we note that all results of this paper hold true (up to obvious modifications) if we

consider the space (D) instead of (Hτ) (recall chain (11)).
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Verlag, Berlin, 2009.

[8] Di Nunno G., Øksendal B., Proske F. White noise analysis for Lévy processes. J. Funct. Anal. 2004, 206 (1),
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collection of works of Institute of Mathematics, NASU 2021, 18 (1), 456–507 (in Ukrainian).

[25] Kachanovsky N.A. On Wick calculus and its relationship with stochastic integration on spaces of regular test func-
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analysis. Methods Funct. Anal. Topology 2015, 21 (4), 336–360.

[29] Kachanovsky N.A., Kachanovska T.O. Interconnection between Wick multiplication and integration on spaces of
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Качановський М.О. Вiкiвське множення та його зв’язок з iнтегруванням та стохастичним дифе-

ренцiюванням на просторах нерегулярних основних функцiй в аналiзi бiлого шуму Левi // Карпат-

ськi матем. публ. — 2024. — Т.16, №1. — C. 61–83.

Ми працюємо з просторами нерегулярних основних функцiй в аналiзi бiлого шуму Ле-

вi, побудованими з використанням узагальнення властивостi хаотичного розкладу, запропо-

нованого Є.В. Литвиновим. Нашою метою є вивчення властивостей природного множення —

вiкiвського множення на цих просторах, а також опис взаємозв’язку цього множення з iнтегру-

ванням та стохастичним диференцiюванням. Бiльш точно, ми встановлюємо, що вiкiвський

добуток нерегулярних основних функцiй є нерегулярною основною функцiєю; показуємо,

що, використовуючи вiкiвське множення, можна виносити незалежний вiд часу множник з-пiд

знаку узагальненого стохастичного iнтеграла; встановлюємо аналог цього результату для iн-

теграла Петтiса (слабкого iнтеграла); отримуємо представлення узагальненого стохастичного

iнтеграла через формальний iнтеграл Петтiса вiд вiкiвського добутку вихiдної пiдiнтегральної

функцiї на бiлий шум Левi; та доводимо, що оператор стохастичного диференцiювання пер-

шого порядку на просторах нерегулярних основних функцiй задовольняє правило Лейбнiца

вiдносно вiкiвського множення.

Ключовi слова i фрази: процес Левi, вiкiвський добуток, стохастичний iнтеграл, iнтеграл

Петтiса, оператор стохастичного диференцiювання.


