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task. Problems of diffusion in solid and liquid solutions with small deviations from the equilibrium state, or 
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Introduction 

The mathematical apparatus of non-equilibrium 

thermodynamics and phase-field modeling is usually used 

to analyze diffusion processes in a complex 

thermodynamic system [1-3]. 

In general, the thermodynamic equations of motion 

have the form [1,3]: 

 

 Ji = ∑  𝑁
𝑘=1 𝐿𝑖𝑘𝑋𝑘 (i=1,..,N), (1) 

 

 

Where Ji are fluxes; Xk are thermodynamic forces;  

Lik = Lki are Onsager kinetic coefficients; i,k are numbers 

of charges (transfer substrates). 

The main driving forces of diffusion in non-

equilibrium thermodynamics are gradients of chemical 

potentials µi system components [4-6]: 

 

 𝑋𝑖 = −𝛻𝜇𝑖. (2) 

 

In accordance with the provisions developed in phase-

field modeling, chemical potentials, in turn, are related to 

the Gibbs energy G by equations [7]: 

 

 𝜇𝑖 =
𝜕𝐺

𝜕𝐶𝑖
,  (3) 

 

The theory of diffusion in metal alloys with a vacancy 

mechanism of atomic migration was developed by Darken 

[4]. The main limitations of this theory are associated with 

the need for the diagonality of the Onsager matrix and the 

equilibrium condition for the concentration of vacancies 

[5, 6]. 

In [6], the kinetics of diffusion in a bimetallic system 

was considered taking into account the off-diagonal 

coefficients of the Onsager matrix. The thermodynamic 

potential in this work was presented as:  

 

 𝜇𝑖 = 𝜇𝑖
0 = 𝑅𝑇 𝑙𝑛 𝑙𝑛 ( 𝛾𝑖𝐶𝑖), (4) 

 

Where Ci – concentration of the i-element; 

γi – activity coefficient of the i-th element, which is 

considered dependent on the same concentration Ci. 
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The equation for the diffusion fluxes of the system 

contains generally unknown activity coefficients of 

elements and vacancies and their derivatives with respect 

to concentrations, which makes it extremely difficult to 

find the values of direct and cross coefficients. In [6], 

expressions for the cross coefficients for an ideal solid 

solution were found. 

Calculating fluxes in a system using the proposed 

method is a very labor-intensive task with a large number 

of unknown dependences of the activity coefficients of 

elements on concentration. Similar difficulties arise in the 

phase-field model [2, 7]. 

 Very often in materials science there is a problem of 

finding flows of elements in time in interacting phases. At 

the same time, the distribution of concentrations in space 

can be neglected, and the systems are considered as 

composite [8-10]. When considering intermittent systems, 

that is, systems that contain several phases, between which 

flows of elements and vacancies pass, finite chemical 

potential differences can be used as thermodynamic forces 

(–∆µi) [8-10].  

In [8], the values of diffusion fluxes in the Fe – C – Cr 

system were calculated taking into account cross 

coefficients at the initial time. In [9], equations were 

obtained that describe the kinetics of the diffusion process 

in a system consisting of two phases and three elements. 

The theory of diffusion processes in solids continues 

to develop intensively in recent years, as can be seen from 

works [10-19], however, the development of methods for 

calculating diffusion in a multicomponent thermodynamic 

system is still an urgent task. 

Of particular interest are problems of diffusion in 

solid and liquid solutions with small deviations from the 

equilibrium state, or fluctuations [19, 20]  

The purpose of this work is to obtain kinetic diffusion 

equations for small deviations of a composite 

thermodynamic system from the equilibrium state and to 

use them to analyze the transformation of carbides in 

chromium steel. 

I. Kinetic equations of a 

multicomponent thermodynamic 

system 

To describe our thermodynamic system, we use 

elements of the theory of small oscillations of a 

generalized mechanical system [21]. 

We define the equilibrium state of a thermodynamic 

system as a state described by a set of generalized 

coordinates 𝑞𝑘
(0)

, for which 

 

  �̇�𝑘 = 0 at 𝑞𝑘 = 𝑞𝑘
(0)

, (5) 

 

Moreover, all higher derivatives vanish. In this state, 

entropy and Gibbs energy have extreme values. 

This also means that if all coordinates of the system 

are equal to the generalized coordinates 𝑞𝑘 = 𝑞𝑘
(0)

, then 

the system is in equilibrium at given external parameters 

of temperature and pressure, i.e. fulfillment of condition 

(5) at t=t0 must result in respect for equalities 𝑞𝑘 = 𝑞𝑘
(0)

 at 

any subsequent time. It will also be assumed that 

generalized coordinates are related to concentrations as 

follows: 

 

 𝑞𝑘 = 𝐶𝑘 − 𝐶𝑘
0,  (6) 

 

Where 𝐶𝑘
0 - equilibrium value of the concentration of 

the component in the selected part of the system. 

The kinetics of diffusion in our multicomponent 

thermodynamic system can be described by a system of 

differential equations [2, 7, 11, 15]: 

 

 �̇�𝑖 = −𝛻(∑  𝑁
𝑘=1 𝐿𝑖𝑘𝛻(

𝜕𝐺

𝜕𝑞𝑘
)), (7) 

 

where ∇ is the gradient. 

When simplifying the system to a discontinuous one, 

we consider diffusion along one coordinate. Replacing 

gradients with finite differences along one coordinate axis 

Δ, equation (7) can be represented in the form 

 

 �̇�𝑖 = −
1

𝛥𝑥×𝛥𝑋
∆𝑗(∑  𝑁

𝑘=1 𝐿𝑖𝑘
1

𝛥𝑥
∆(

𝜕𝐺

𝜕𝑞𝑘
)), (8) 

 

where ∆ is the chemical potential difference between two 

parts of the system, ∆x is the distance between two parts 

of the system, ∆j is the difference in fluxes between two 

points, ∆X is the distance between two points of the 

system for fluxes. In the general case, we assume that the 

selected points for potentials and fluxes are different and, 

accordingly, different distances between the points 

(Fig. 1). 

 

 
Fig. 1. Diagram of a two-phase system. 

 

In equation (8), we will put the sign of the difference 

in chemical potentials in brackets, referring it to the 

thermodynamic potential, and we will omit the sign of the 

difference in fluxes, since the expression in brackets 

already determines the difference in particle fluxes 

between parts of the system. 

From the equations of motion (8) we obtain the 

following system of first-order differential equations that 

describe the kinetics of a thermodynamic system for small 

deviations from the equilibrium position: 

 

 �̇�𝑖 = −
1

𝛥𝑥×𝛥𝑋
∑  𝑁

𝑘=1 𝐿𝑖𝑘
𝜕∆𝐺

𝜕𝑞𝑘
.  (9) 

 

From conditions (8), which determine the conditions 

of equilibrium, and the equations of motion (9), it follows 

that the necessary conditions of equilibrium are the 

equalities: 
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𝜕𝐺

𝜕𝑞𝑘
= 0, at 𝑞𝑘 = 𝑞𝑘

(0)
, k=1,…,N.  (10) 

 

For a mechanical system in a state of stable 

equilibrium, the value of the potential function has an 

absolute minimum [21]. For a thermodynamic system in a 

state of equilibrium, the value thermodynamic potential G 

has an extremum [2]. 

Further we will consider small deviations from the 

equilibrium state, then the values qk will be small and we 

can use a series expansion in these quantities, limiting 

ourselves to the first few terms. Then the expression for 

the thermodynamic potential can be written as:

 

  𝐺(𝑞𝑘) = 𝐺(𝑞𝑘0) + ∑   
𝑘  (

𝜕𝐺

𝜕𝑞𝑘
)

0
𝑞𝑘 +

1

2
∑   

𝑘,𝑙 (
𝜕2𝐺

𝜕𝑞𝑘𝜕𝑞𝑙
)

0
𝑞𝑘𝑞𝑙+. .. (11)

 

Taking into account equalities (10), and omitting all 

terms of the third order and higher, we obtain the 

following expression for the thermodynamic potential: 

 

 ∆G= 
1

2
𝑏𝑘𝑙𝑞𝑘𝑞𝑙,  (12) 

 

 where 𝑏𝑘𝑙 = (
𝜕2𝐺

𝜕𝑞𝑘𝜕𝑞𝑙
)

0
= (

𝜕𝜇𝑘

𝜕𝑞𝑙
)

0
. (13) 

 

Equations (9), taking into account (15), lead to the 

following basic equations of motion of a multicomponent 

thermodynamic system for small deviations from the 

equilibrium position: 

 

 �̇�𝑖 = −
1

𝛥𝑥×𝛥𝑋
∑  𝑁

𝑘=1 ∑  𝑁
𝑙=1 𝐿𝑖𝑘𝑏𝑘𝑙𝑞𝑙, i =1,…, N. (14) 

 

In equation (14) it is necessary to substitute the values 

of the kinetic conductivity coefficients Lik and power 

coefficients bkl. 

As is known [1, 3], direct kinetic coefficients Lii 

related to the diffusion coefficients of the elements Di 

ratio: 

 

 Lii = CiDi /RT, (15) 

 

Cross Onsager coefficients for a thermodynamic 

system tending to equilibrium are found using the 

formulas given in [8-10]: 

 

 𝐿𝑖𝑘 = 𝐿𝑘𝑖 = ±√𝐿𝑖𝑖 × 𝐿𝑘𝑘,     i,k = 1…N (16) 

 

Power coefficient values bik in the general case, it 

should be found using formula (13), taking into account 

the dependence of the thermodynamic potential on 

concentration of the form (4). This greatly complicates 

calculations and requires a large amount of experimental 

data to determine the dependence of activity coefficients 

on concentration. However, in a system state close to 

equilibrium, the following reasonable assumptions can be 

made. 

 Firstly, we will assume that the interaction between 

various elements of the system with a sufficient degree of 

accuracy near equilibrium is determined by cross 

coefficients (16), and the force coefficients 

 

 𝑏𝑖𝑘 = (
𝜕𝜇𝑖

𝜕𝑞𝑘
)

0
= 0, i≠k. (17) 

 

This means that the dependence of chemical 

potentials µi from the content of other elements in a state 

close to equilibrium is insignificant. 

Secondly, the dependence of the chemical potential µi 

from the element content near equilibrium is determined 

by its expression for an ideal solution, and the difference 

in chemical potentials is determined by the formula [1, 3]: 

 

 µi = µi
0(T)+ RT lnCi, (18) 

 

Using (18) in equation (17), we find the values of the 

direct force coefficients: 

 

 𝑏𝑖𝑖 =
𝑅𝑇

𝐶𝑖
0.  (19) 

 

Now the problem of finding kinetic diffusion 

equations in a multicomponent system is completely 

defined. Substituting expressions (15) – (19) into the 

equation of motion (14), we obtain the following system 

of differential equations: 

 �̇�𝑖 = −
1

𝛥𝑥×𝛥𝑋
∑  𝑁

𝑘=1

√𝐷𝑖𝐶𝑖
0𝐷𝑘𝐶𝑘

0

𝐶𝑖
0 𝑞𝑘. (20) 

 

For a closed thermodynamic system, we must also 

take into account the completeness condition for 

concentrations: 

 

 ∑  𝑁
𝑘=1 𝐶𝑘 = 1,  

or, what is the same, 

  ∑  𝑁
𝑘=1 𝑞𝑘 = 0. (21) 

 

One of the variables is not independent. 

System of equations (20), taking into account 

condition (21), makes it possible to calculate the diffusion 

kinetics of elements of a composite multicomponent 

thermodynamic system for small deviations from the 

equilibrium state, primarily fluctuations or small external 

influences. The condition for small deviations can be 

written as an inequality: 

 

 qi < Ci
0. (22) 

 

Below we will consider a non-trivial example of 

constructing kinetic equations for model steel. 

II. Kinetics of carbide transformation in 

a three-component system Fe – C – 

Cr 

As an example, we will find solutions to the kinetic 
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equations for model steel Fe – C – Cr with 0.15% C and 

5% Cr, previously used in [8, 9]. The initial state of this 

steel is chromium with a concentration Ca
Cr = 0.05 and 

carbon with concentration Ca
C = 0.007, iron concentration 

Ca
Fe = 0.943. 

This steel is subjected to hardening from 900°C 

followed by high tempering at a temperature of 600°C. At 

the first stage, the formation of cementite-type carbides 

occurs as a result of the rapid diffusion of carbon from the 

solid solution; this process was described earlier in the 

work [9]. 

Let's calculate the kinetics carbide transformation 

(Fe3-x, Crx)C → (Fe3-x, Cr4+x)C3 happening in such steel at 

a temperature of 600°C [9, 16, 22]. We will assume that in 

the solid α-solution after the completion of the stage of 

rapid diffusion of carbon, chromium is found with a 

concentration Ca
Cr = 0.05 and carbon with concentration 

Ca
C = 0.002, iron concentration is Ca

Fe= 0.948. In 

cementite type carbide there is chromium with a mass 

fraction of ~5% (concentration 0.05) and carbon with a 

concentration CC = 0.25, iron concentration in carbide 

CFe= 0.7. In total, 0.005 at. units carbon, the amount of 

cementite-type carbides was correspondingly 0.02 at. 

Units. This carbide at a temperature of 600°C gradually 

transforms into a special carbide (Fe3-x, Cr4+x) C3 with 

concentration CCr ≈ 0.4 and carbon with CC = 0.3, iron 

concentration in carbide is CFe≈ 0.3 [9, 22]. In this case, 

the concentrations of elements in the solid solution change 

to their equilibrium value for chromium  

Ca0
Cr = 0.040 (qCr = 0,01), Ca0

Fe = 0.959 (qFe = 0.011) and 

carbon with concentration Ca0
C = 0.001 (qC = 0.001). 

Diffusion of iron in a solid solution occurs in the 

direction of increasing its concentration, i.e. forced [8, 9]. 

As you can see, the conditions for small deviations for 

our system (22) are satisfied for chromium and iron and 

are not satisfied for carbon. Therefore, we cannot 

construct a kinetic equation for carbon. Below we will 

show how to get around this difficulty. 

The temperature dependences of the diffusion 

coefficients of chromium and carbon in chromium-alloyed 

ferrite are: 𝑚2/𝑠: 

 

 

 𝐷𝐹𝑒
𝛼 = 2.0 × 10−4 𝑒𝑥𝑝 [

−251000

𝑅𝑇
] ,  [23] (23)  

 

 𝐷𝐶𝑟
𝛼 = 3.0 × 10−4 𝑒𝑥𝑝 𝑒𝑥𝑝 [

−306400

𝑅𝑇
] , [23]    (24) 

 

 𝐷𝐶
𝛼 = 8.0 × 10−7𝑒𝑥𝑝 [

−84000

𝑅𝑇
] + 2.2 × 10−4𝑒𝑥𝑝 [

−123000

𝑅𝑇
] . [24] (24)

 

For our thermodynamic system, we must also take 

into account the completeness condition for 

concentrations in the solid solution (21), which we write 

in the form (we neglect the change in vacancy 

concentration): 

 

   qFe + qC+ qCr =0. (25) 

 

At the second stage of diffusion in our system, carbon 

can diffuse only when the concentration of chromium in 

the carbide increases simultaneously with it, i.e. slowly. 

We will assume, introducing one more additional 

condition, that the fluxes of carbon and chromium are 

consistent, and change carbon concentration in solid 

solution proportional to the change chromium 

concentrations: 

 

 �̇�𝐶 =
𝑞𝐶

0

𝑞𝐶𝑟
0 �̇�𝐶𝑟 (26) 

 

This is the second stage of diffusion in our system - 

the stage of slow diffusion of carbon, but fast diffusion of 

chromium and iron. 

At this stage, the concentrations of carbon, chromium 

and iron tend to their equilibrium concentrations in the 

carbide and solid solution. 

The kinetic equations of our thermodynamic system 

take the form: 

  �̇�𝐹𝑒 =
𝐷𝐹𝑒

𝑆
𝑞𝐹𝑒 +

√𝐷𝐹𝑒𝐶𝐹𝑒
0 𝐷𝐶𝑟𝐶𝐶𝑟

0

𝑆𝐶𝐹𝑒
0 𝑞𝐶𝑟 +

√𝐷𝐹𝑒𝐶𝐹𝑒
0 𝐷𝐶𝐶𝐶

0

𝑆𝐶𝐹𝑒
0 𝑞𝐶,  (27) 

 

�̇�𝐶𝑟 =
𝐷𝐶𝑟

𝑆
𝑞𝐶𝑟 +

√𝐷𝐹𝑒𝐶𝐹𝑒
0 𝐷𝐶𝑟𝐶𝐶𝑟

0

𝑆𝐶𝐶𝑟
0 𝑞𝐹𝑒 +

√𝐷𝐶𝑟𝐶𝐶𝑟
0 𝐷𝐶𝐶𝐶

0

𝑆𝐶𝐶𝑟
0 𝑞𝐶   (28) 

 

The system of equations (27)-(28) is consistent and 

allows one to find the change in concentrations in steel 

over time. 

At a temperature of 600°C: 

 

D1 = Da
Fe ≈ 1.0·10-19m2/s; D2 = Da

Cr ≈1.0·10-23m2/s; 

D3 = Da
C ≈ 2.0·10-11m2/s. 

For numerical assessment we also use the values 

∆X=∆x=1.0×10-7 m. 

Finally, we get:

 

 �̇�𝐹𝑒 = −(1.0 × 10−5𝑞𝐹𝑒 + 2.0 × 10−8𝑞𝐶𝑟 + 4.5 × 10−3𝑞𝐶), (29) 

 

 �̇�𝐶𝑟 = −(1.0 × 10−9𝑞𝐶𝑟 + 5.0 × 10−7𝑞𝐹𝑒 + 2.3 × 10−4𝑞𝐶).     (30)
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Numerical calculations show that noticeable diffusion 

of chromium (63% q0
Cr) at a distance of  

1.0×10-7 m with the size of the resulting carbide particles 

~1.0×10-7 m occurs in ~10 hours (Fig. 2). 

If relation (26) is not satisfied, but there is another 

proportionality coefficient, then this leads to equilibrium 

of the system with other parameters of component 

variations. Thus, variations in the concentrations of Fe and 

Cr at �̇�С = 0.1�̇�𝐶𝑟, tend to values of -0.002, i.e. the initial 

variations of these concentrations acquire values of 0.011 

for Fe and 0.09 for Cr. The diffusion of chromium is 

significantly accelerated in comparison with the diffusion 

equation (24), due to the cross coefficient in equations (28) 

and (30), and is practically completed in about 50 hours. 

The diffusion of carbon in our case is slow, accompanying 

the diffusion of chromium, and the diffusion of iron, 

generally speaking, is forced, because it occurs in the 

direction of increasing iron concentration. 

 

 

Conclusions 

1. A general method of calculating diffusion 

flows in a multicomponent thermodynamic system with 

small deviations from the equilibrium state has been 

developed. 

 
a 

 
b 

Fig. 2. Calculated change in the concentrations of elements in the solid solution:  

a – at the value  �̇�С = 0.08�̇�𝐶𝑟, b – at the value �̇�С = 0.1�̇�𝐶𝑟,  

Fe is represented blue diamonds, Cr is shown red squares, C is represented blue triangles. 
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2. The connection between the mechanical 

approach to the analysis of generalized systems and the 

phenomenological equations of non-equilibrium 

thermodynamics is established. 

3. Examples of the use of the developed 

methodology for the analysis of carbide transformations in 

chromium steel are given. 

4. Numerical calculations show that noticeable 

diffusion of chromium in steel at a temperature of 600°C 

with the size of the obtained carbide particles of 10 μm 

occurs in about 10 hours. 
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С. Бобирь1,  Й. Одквіст2 

Кінетика дифузії в багатокомпонентній термодинамічній системі при 

малих відхиленнях від рівноважного стану 

1З.І. Інститут чорної металургії ім. З.І. Некрасова НАНУ, м. Дніпро, Україна, svbobyr07@gmail.com 
2Королівський технологічний інститут KTH, Стокгольм, Швеція, odqvist@kth.se 

Теорія дифузійних процесів у твердих тілах за останні десятиліття досягла значних результатів, але 

розробка методів розрахунку дифузії в багатокомпонентній термодинамічній системі залишається 

актуальною задачею. Значний інтерес представляють проблеми дифузії в твердих і рідких розчинах з 

малими відхиленнями від стану рівноваги, або флуктуаціями. У роботі розроблено загальну методику 
розрахунку дифузійних потоків у багатокомпонентній термодинамічній системі при малих відхиленнях від 

рівноважного стану. Встановлено зв'язок між механічним підходом до аналізу узагальнених систем і 

феноменологічними рівняннями нерівноважної термодинаміки. Наведено приклади використання 

розробленої методики для аналізу карбідних перетворень у хромистій сталі. 
Ключові слова: нерівноважна термодинаміка, варіаційні принципи, дифузійні потоки, рівняння руху, 

карбідні перетворення, хромиста сталь. 
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