Analysis of the Structural, Morphological, and Elastic Properties of Nanosized CuFe2O4 Spinel Synthesized via Sol-Gel Self-Combustion Method

Authors

  • Julia Mazurenko Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine; Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
  • Larysa Kaykan G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine,Kyiv, Ukraine
  • Khrystyna Bandura Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
  • Oleksii Vyshnevskyi Department of Diamond, M.P. Semenenko Institute of Geochemistry, Mineralogy, and Ore Formation NAS of Ukraine, Kyiv, Ukraine
  • Mykola Moiseienko Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
  • Myroslav Kuzyshyn Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
  • Nataliia Ostapovych Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.2.380-390

Keywords:

Nanostructured material, Copper Ferrite, Sol-Gel Self-Combustion, X-ray diffraction, Microstructural analysis, Halder-Wagner method, Scanning electron microscopy

Abstract

Nanosized CuFe2O4 ferrite was synthesized through the sol-gel self-combustion technique, using iron and copper nitrates with citric acid as fuel. The synthesized ferrite was subsequently analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). X-ray diffraction studies validated the crystalline nature of the CuFe2O4, identifying it as having a mixed spinel structure within the Fd3m space group. Particle sizes were quantified using several methods including Debye-Scherrer, Williamson-Hall, Halder-Wagner, modified Debye-Scherrer, and size-strain plot (SSP), with all methods indicating a consistent average particle size of 28 nm. The elastic properties of the nanoparticles were extensively characterized, utilizing both diffraction line broadening (via the Williamson-Hall method) and Fourier-transform infrared spectroscopy (FTIR) to evaluate the materials' structural dynamics. Additionally, microstrain within the crystal lattice and various elastic constants, such as Young's modulus, Shear modulus, Debye temperature, and the velocities of longitudinal and transverse wave propagation were calculated. An electron density distribution was also constructed from the X-ray diffraction data, providing insight into the electronic environment and bonding characteristics of the material.

Author Biography

Julia Mazurenko, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine; Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland

кандидат фізико-математичних наук, асистент кафедри медичної інформатики, медичної та біологічної фізики Івано-Франківського Національного медичного університету

References

H. K. Dubey, & P. Lahiri. Synthesis, structural, dielectric and magnetic properties of Cd2+ based Mn nanosized ferrites, Materials Technology (UK), 131–144, 36(3), (2021); https://doi.org/10.1080/10667857.2020.1734728.

E. E. Ateia, M. K. Abdelmaksoud, M. M. Arman, & A. S. Shafaay. Comparative study on the physical properties of rare-earth-substituted nano-sized CoFe2O4. Applied Physics. A, Materials Science & Processing, 126(2), (2020); https://doi.org/10.1007/s00339-020-3282-5.

S. A. Mazen, H. M. Elsayed, & N. I. Abu-Elsaad. A comparative study of different concentrations of (Co/Ni/Cu) effects on elastic properties of Li–Mn ferrite employing IR spectroscopy and ultrasonic measurement. Ceramics International, 26635–26642, 47(19), (2021); https://doi.org/10.1016/j.ceramint.2021.06.071.

J. B. Shitole, S. N. Keshatti, S. M. Rathod, & S. S. Jadhav. Y3+ composition and particle size influenced magnetic and dielectric properties of nanocrystalline Ni0.5Cu0.5YxFe2-xO4 ferrites. Ceramics International, 17993–18002, 47(13), (2021); https://doi.org/10.1016/j.ceramint.2021.03.114.

J. Mazurenko, L. Kaykan, A. K. Sijo, M. Moiseienko, M. Kuzyshyn, N. Ostapovych, & M. Moklyak. The influence of reaction medium pH on the structure, optical, and mechanical properties of nanosized Cu-Fe ferrite synthesized by the sol-gel autocombustion method. Journal of Nano Research, 65–84, 81, (2023); https://doi.org/10.4028/p-d2fqah.

T. Dippong, D. Toloman, M. Dan, E. A. Levei, & O. Cadar. Structural, morphological and photocatalytic properties of Ni-Mn ferrites: Influence of the Ni:Mn ratio. Journal of Alloys and Compounds, 913, 165129, (2022); https://doi.org/10.1016/j.jallcom.2022.165129.

R. Singh Yadav, I. Kuřitka, J. Vilcakova, T. Jamatia, M. Machovsky, D. Skoda, P. Urbánek, M. Masař, M. Urbánek, L. Kalina, & J. Havlica. Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrasonics Sonochemistry, 61, 104839, (2020); https://doi.org/10.1016/j.ultsonch.2019.104839.

R. Zapukhlyak, M. Hodlevsky, V. Boychuk, J. Mazurenko, V. Kotsyubynsky, L. Turovska, B. Rachiy, & S. Fedorchenko. Structure and magnetic properties of hydrothermally synthesized CuFe2O4 and CuFe2O4/rGO composites. Journal of Magnetism and Magnetic Materials, 587 171208 (2023); https://doi.org/10.1016/j.jmmm.2023.171208.

R. Qindeel N. H. Alonizan E. A. Alghamdi & M. A. Awad. Synthesis and characterization of spinel ferrites for microwave devices. Journal of Sol-Gel Science and Technology, 593–599, 97(3), (2021); https://doi.org/10.1007/s10971-021-05470-9.

Y. J. Xu, S. Y. Song, C. X. Li, B. Hong, & X. Q. Wang. Magnetic behavior, photocatalytic activity and gas-sensing performance of porous lanthanum ferrites powders. Materials Chemistry and Physics, 267, 124628, (2021); https://doi.org/10.1016/j.matchemphys.2021.124628.

M. J. Sadiq Mohamed, S. Caliskan, M. A. Gondal, M. A. Almessiere, A. Baykal, & A. Roy. Se-doped magnetic co–Ni spinel ferrite nanoparticles as electrochemical catalysts for hydrogen evolution. ACS Applied Nano Materials, 7330–7341, 6(9), (2023); https://doi.org/10.1021/acsanm.3c00464.

N. K. Gupta, Y. Ghaffari, S. Kim, J. Bae, K. S. Kim, & M. Saifuddin. Photocatalytic degradation of organic pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles at neutral pH. Scientific Reports, 10(1), (2020); https://doi.org/10.1038/s41598-020-61930-2.

B. Shi, Y. Wang, I. Ahmed, & B. Zhang. Catalytic degradation of refractory phenol sulfonic acid by facile, calcination-free cobalt ferrite nanoparticles. Journal of Environmental Chemical Engineering, 107616, 10(3), (2022); https://doi.org/10.1016/j.jece.2022.107616.

A. Becker, K. Kirchberg, & R. Marschall. Magnesium ferrite (MgFe2O4) nanoparticles for photocatalytic antibiotics degradation. Zeitschrift Für Physikalische Chemie (Frankfurt Am Main, Germany), 645–654, 234(4), (2020); https://doi.org/10.1515/zpch-2019-1430.

K. K. Kefeni, T. A. M. Msagati, T. T. I. Nkambule, & B. B. Mamba. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Materials Science & Engineering. C, Materials for Biological Applications, 110314, 107, (2020); https://doi.org/10.1016/j.msec.2019.110314.

J. Muhamad Arshad, W. Raza, N. Amin, K. Nadeem, M. Imran Arshad, & M. Azhar Khan. Synthesis and characterization of cobalt ferrites as MRI contrast agent. Materials Today: Proceedings, S50–S54, 47, (2021); https://doi.org/10.1016/j.matpr.2020.04.746 .

M. I. A. Abdel Maksoud, M. M. Ghobashy, A. S. Kodous, & A. H. Ashour. Insights on magnetic spinel ferrites for targeted drug delivery and hyperthermia applications. Nanotechnology Reviews, 372–413, 11(1), (2022); https://doi.org/10.1515/ntrev-2022-0027.

G. Nandhini, & M. K. Shobana. Role of ferrite nanoparticles in hyperthermia applications. Journal of Magnetism and Magnetic Materials, 552, 169236, (2022); https://doi.org/10.1016/j.jmmm.2022.169236.

D. O. Morais, A. Pancotti, G. S. de Souza, & J. Wang. Synthesis, characterization, and evaluation of antibacterial activity of transition metal oxyde nanoparticles. Journal of Materials Science. Materials in Medicine, 32(9), (2021); https://doi.org/10.1007/s10856-021-06578-8.

C. Joseph Prabagar, S. Anand, M. Asisi Janifer, S. Pauline, & P. A. S. Theoder. Effect of metal substitution (Zn, Cu and Ag) in cobalt ferrite nanocrystallites for antibacterial activities. Materials Today: Proceedings, 1999–2006, 47, (2021); https://doi.org/10.1016/j.matpr.2021.04.150.

V. K. Surashe, V. Mahale, A. P. Keche, & R. G. Dorik. Structural and electrical properties of copper ferrite (CuFe2O4) NPs. Journal of Physics. Conference Series, 1644(1), 012025, (2020); https://doi.org/10.1088/1742-6596/1644/1/012025 .

F. H. Mulud, N. A. Dahham, & I. F. Waheed. Synthesis and characterization of copper ferrite nanoparticles. IOP Conference Series. Materials Science and Engineering, 072125, 928(7), (2020); https://doi.org/10.1088/1757-899x/928/7/072125.

K. Cui, M. Sun, J. Zhang, J. Xu, & Yuan, C. Facile solid-state synthesis of tetragonal CuFe2O4 spinels with improved infrared radiation performance. Ceramics International, 10555–10561, 48(8), (2022); https://doi.org/10.1016/j.ceramint.2021.12.268.

S. Mallesh, M. Gu, & K. H. Kim. Cubic to tetragonal phase transition in CuFe₂O₄. Experimental details nanoparticles. Journal of Magnetics, 7–13, 26(1), (2021); https://doi.org/10.4283/jmag.2021.26.1.007.

R., Dhyani, R. C., Srivastava, & G. Dixit. Study of magnetic and temperature-dependent dielectric properties of Co-CuFe2O4 nanoferrites. Journal of Electronic Materials, 5492–5507, 51(10), (2022); https://doi.org/10.1007/s11664-022-09831-0.

L. Kaykan, A. Sijo, J. Mazurenko, & A. Żywczak. Influence of the preparation method and aluminum ion substitution on the structure and electrical properties of lithium–iron ferrites. Applied Nanoscience, 503–511, 12(3), (2022); https://doi.org/10.1007/s13204-021-01691-0

S. K. Sen, T. C. Paul, S. Dutta, M. N. Hossain, & M. N. H. Mia. XRD peak profile and optical properties analysis of Ag-doped h-MoO3 nanorods synthesized via hydrothermal method. Journal of Materials Science: Materials in Electronics, 1768–1786, 31(2), (2020); https://doi.org/10.1007/s10854-019-02694-y.

T. Ungár. Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 777–781, 51(8), (2004); https://doi.org/10.1016/j.scriptamat.2004.05.007.

W. H. Hall. X-ray line broadening in metals. Proceedings of the Physical Society, 741–743, 62(11), (1949); https://doi.org/10.1088/0370-1298/62/11/110.

B. E. Warren, & B. L. Averbach. The separation of cold-work distortion and particle size broadening in X-ray patterns. Journal of Applied Physics, 497–497, 23(4), (1952); https://doi.org/10.1063/1.1702234.

D. Balzar, & H. Ledbetter. Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks. Journal of Applied Crystallography, 97–103, 26(1), (1993); https://doi.org/10.1107/s0021889892008987.

L. Kaykan, J. Mazurenko, N. Ostapovych, A. Sijo, N. ’Ivanichok. Effect of pH on structural morphology and magnetic properties of ordered phase of cobalt doped lithium ferrite nanoparticles synthesized by sol-gel auto-combustion method. Journal of Nano- and Electronic Physics, 12(4), (2020); https://doi.org/10.21272/jnep.12(4).04008.

L. Kaykan, J. Mazurenko, I. Yaremiy, K. Bandura, N. Ostapovych. Effect of nickel ions substitution on the structural and electrical properties of a nanosized lithium-iron ferrite obtained by the sol-gel auto-combustion method. Journal of Nano- and Electronic Physics, 11(5), (2019); https://doi.org/10.21272/jnep.11(5).05041.

N. Khan, I. Irshad, B. S. Almutairi, A. Dahshan, A. Husssain, & M. Sagir. Sol-gel auto-combustion synthesis and characterization of Nd3+ doped Cu0.5Co0.5Fe2-xNdxO4 (x = 0.0, 0.1, 0.2, 0.3, 0.4, & 0.5) spinel ferrites. Ceramics International, 8594–8601, 50(6), (2024); https://doi.org/10.1016/j.ceramint.2023.08.037.

E.H. Nickel. The new mineral cuprospinel (CuFe2O4) and other spinels from an oxidized ore dump at Baie Verte, Newfoundland. Canadian Mineralogist: 11, 1003-1007, (1973).

K. Momma, & F. Izumi. VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 1272–1276, 44(6), (2011); https://doi.org/10.1107/s0021889811038970.

K. Pubby, S. S. Meena, S. M. Yusuf, & S. Bindra Narang. Cobalt substituted nickel ferrites via Pechini’s sol–gel citrate route: X-band electromagnetic characterization. Journal of Magnetism and Magnetic Materials, 430–445, 466, (2018); https://doi.org/10.1016/j.jmmm.2018.07.038.

S. B. Waje, M. Hashim, W. D. W. Yusoff, & Z. Abbas. X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering. Applied Surface Science, 3122–3127, 256(10), (2010); https://doi.org/10.1016/j.apsusc.2009.11.084.

R. S. Shitole, V. K. Barote, S. B. Kadam, & R. H. Kadam. Williamson-Hall strain analysis, cation distribution and magnetic interactions in Dy3+ substituted zinc-chromium ferrite. Journal of Magnetism and Magnetic Materials, 588, 171468, (2023); https://doi.org/10.1016/j.jmmm.2023.171468.

A. M. Nashaat, A. Abu El-Fadl, M. A. Kassem, & H. Nakamura. Optimizing a microwave-combustion synthesis and particle-size dependent magnetic properties of M-type Sr ferrite. Materials Chemistry and Physics, 305, 128008, (2023); https://doi.org/10.1016/j.matchemphys.2023.128008.

S. Debnath, K. Deb, B. Saha, & R. Das. X-ray diffraction analysis for the determination of elastic properties of zinc-doped manganese spinel ferrite nanocrystals (Mn0.75Zn0.25Fe2O4), along with the determination of ionic radii, bond lengths, and hopping lengths. The Journal of Physics and Chemistry of Solids, 105–114, 134, (2019); https://doi.org/10.1016/j.jpcs.2019.05.047.

S. Debnath, & R. Das. Cobalt doping on nickel ferrite nanocrystals enhances the micro-structural and magnetic properties: Shows a correlation between them. Journal of Alloys and Compounds, 852, (2021); https://doi.org/10.1016/j.jallcom.2020.156884.

G. S. Thool, A. K. Singh, R. S. Singh, A. Gupta, & M. A. B. H. Susan. Facile synthesis of flat crystal ZnO thin films by solution growth method: A micro-structural investigation. Journal of Saudi Chemical Society, 712–721, 18(5), (2014);https://doi.org/10.1016/j.jscs.2014.02.005.

S. E. M. Ghahfarokhi, M. Ahmadi, & I. Kazeminezhad. Effects of Bi3+ substitution on structural, morphological, and magnetic properties of cobalt ferrite nanoparticles. Journal of Superconductivity and Novel Magnetism, 32(10), 3251–3263, (2019); https://doi.org/10.1007/s10948-019-5058-8.

U. Kumar, D. Padalia, P. Kumar, & P. Bhandari. Estimation of lattice strain and structural study of BaTiO3/PS polymer composite using X-ray peak profile analysis. Journal of Nanoparticle Research: An Interdisciplinary Forum for Nanoscale Science and Technology, 25(6), (2023); https://doi.org/10.1007/s11051-023-05779-2.

K. Mabhouti, P. Norouzzadeh, & M. Taleb-Abbasi. Effects of Fe, Co, or Ni substitution for Mn on La0.7Sr0.3MnO3 perovskite: Structural, morphological, and optical analyses. Journal of Non-Crystalline Solids, 610, (2023); https://doi.org/10.1016/j.jnoncrysol.2023.122283.

Kumar S. Ravina, S. Z. Hashmi, G. Srivastava, J. Singh, A. M. Quraishi, & P. A. Alvi. Synthesis and investigations of structural, surface morphology, electrochemical, and electrical properties of NiFe2O4 nanoparticles for usage in supercapacitors. Journal of Materials Science: Materials in Electronics, 34(10), (2023); https://doi.org/10.1007/s10854-023-10312-1.

P. Acharya, R. Desai, V. K. Aswal, & R. V. Upadhyay. Structure of Co-Zn ferrite ferrofluid: A small angle neutron scattering analysis. Pramana, 1069–1074, 71(5), (2008); https://doi.org/10.1007/s12043-008-0225-7

R. D. Waldron. Infrared spectra of ferrites. The Physical Review, 1727–1735, 99(6), (1955); https://doi.org/10.1103/physrev.99.1727.

V. G. Patil, S. E. Shirsath, S. D. More, S. J. Shukla, & K. M. Jadhav. Effect of zinc substitution on structural and elastic properties of cobalt ferrite. Journal of Alloys and Compounds, 199–203, 488(1), (2009); https://doi.org/10.1016/j.jallcom.2009.08.078.

S. M. Patange, S. E. Shirsath, S. P. Jadhav, V. S. Hogade, S. R. Kamble & K. M. Jadhav. Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. Journal of Molecular Structure, 40–44, 1038, (2013); https://doi.org/10.1016/j.molstruc.2012.12.053.

M. R. Patil, M. K. Rendale, S. N. Mathad, & R. B. Pujar. FTIR spectra and elastic properties of Cd-substituted Ni–Zn ferrites. International Journal of Self-Propagating High-Temperature Synthesis, 33–39, 26(1), (2017); https://doi.org/10.3103/s1061386217010083.

M. Thavarani, M. C. Robert, N. Pavithra, R. Saravanan, Y. B. Kannan, & S. B. Prasath. Effect of Ca2+ doping on the electronic charge density and magnetic properties of ZnFe2O4 spinel ferrites. Journal of Materials Science: Materials in Electronics, 4116–4131, 33(7), (2022); https://doi.org/10.1007/s10854-021-07605-8.

N. Abinaya, M. C. Robert, N. Srinivasan, & S. Saravanakumar. Electron density mapping and bonding in Mn doped CoFe2O4 using XRD, and its correlation with room temperature optical and magnetic properties. Journal of Magnetism and Magnetic Materials, 170938, 580, (2023); https://doi.org/10.1016/j.jmmm.2023.170938.

S. K. Ahmed, M. F. Mahmood, M. Arifuzzaman, & M. Belal Hossen. Enhancement of electrical and magnetic properties of Al3+ substituted CuZn nano ferrites with structural Rietveld refinement. Results in Physics, 104833, 30, (2021); https://doi.org/10.1016/j.rinp.2021.104833.

Downloads

Published

2024-06-26

How to Cite

Mazurenko, J., Kaykan, L., Bandura, K., Vyshnevskyi, O., Moiseienko, M., Kuzyshyn, M., & Ostapovych, N. (2024). Analysis of the Structural, Morphological, and Elastic Properties of Nanosized CuFe2O4 Spinel Synthesized via Sol-Gel Self-Combustion Method. Physics and Chemistry of Solid State, 25(2), 380–390. https://doi.org/10.15330/pcss.25.2.380-390

Issue

Section

Scientific articles (Physics)